Table of Chapter

Introduction ... 1

- Purpose of This Book .. 1
- The Handbook for Biological Statistics 1
- About the Author of this Companion 1
- About R .. 2
- Obtaining R ... 2
- A Few Notes to Get Started with R 3
- Avoiding Pitfalls in R .. 10
- Help with R ... 11
- R Tutorials ... 12
- Formal Statistics Books .. 13

Tests for Nominal Variables ... 14

- Exact Test of Goodness-of-Fit ... 14
- Power Analysis .. 23
- Chi-square Test of Goodness-of-Fit 24
- G–test of Goodness-of-Fit ... 32
- Chi-square Test of Independence ... 35
- G–test of Independence .. 47
- Fisher’s Exact Test of Independence 53
- Small Numbers in Chi-square and G–tests 61
- Repeated G–tests of Goodness-of-Fit 61
- Cochran–Mantel–Haenszel Test for Repeated Tests of Independence ... 66

Descriptive Statistics .. 78

- Statistics of Central Tendency ... 78
- Statistics of Dispersion .. 84
- Standard Error of the Mean .. 87
- Confidence Limits ... 88

Tests for One Measurement Variable ... 94

- Student’s t–test for One Sample .. 94
- Student’s t–test for Two Samples .. 97
- Mann–Whitney and Two-sample Permutation Test 101
<table>
<thead>
<tr>
<th>Chapters Not Covered in This Book</th>
<th>103</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I, II, and III Sums of Squares</td>
<td>104</td>
</tr>
<tr>
<td>One-way Anova</td>
<td>106</td>
</tr>
<tr>
<td>Kruskal–Wallis Test</td>
<td>118</td>
</tr>
<tr>
<td>One-way Analysis with Permutation Test</td>
<td>129</td>
</tr>
<tr>
<td>Nested Anova</td>
<td>133</td>
</tr>
<tr>
<td>Two-way Anova</td>
<td>143</td>
</tr>
<tr>
<td>Two-way Anova with Robust Estimation</td>
<td>161</td>
</tr>
<tr>
<td>Paired t–test</td>
<td>169</td>
</tr>
<tr>
<td>Wilcoxon Signed-rank Test</td>
<td>178</td>
</tr>
</tbody>
</table>

Regressions
- Correlation and Linear Regression | 182
- Spearman Rank Correlation | 190
- Curvilinear Regression | 193
- Analysis of Covariance | 206
- Multiple Regression | 216
- Simple Logistic Regression | 228
- Multiple Logistic Regression | 242

Multiple tests | 256
- Multiple Comparisons | 256

Miscellany | 263
- Chapters Not Covered in this Book | 263

Other Analyses | 264
- Contrasts in Linear Models | 264
- Cate–Nelson Analysis | 275

Additional Helpful Tips | 282
- Reading SAS Datalines in R | 282
Table of Contents

Introduction .. 1

Purpose of This Book .. 1

The Handbook for Biological Statistics .. 1

About the Author of this Companion .. 1

About R .. 2

Obtaining R .. 2
 - Standard installation .. 2
 - R Studio .. 3
 - Portable application .. 3
 - R Online: R Fiddle .. 3

A Few Notes to Get Started with R ... 3
 - Packages used in this chapter .. 3
 - A cookbook approach ... 3
 - Color coding in this book ... 3
 - Copying and pasting code .. 3
 - From the website .. 4
 - From the pdf .. 4
 - A sample program ... 4
 - Assignment operators ... 4
 - Comments ... 5
 - Installing and loading packages .. 5
 - Data types ... 5
 - Creating data frames from a text string of data .. 5
 - Reading data from a file ... 6
 - Variables within data frames ... 7
 - Using `dplyr` to create new variables in data frames ... 8
 - Extracting elements from the output of a function ... 8
 - Exporting graphics ... 9

Avoiding Pitfalls in R .. 10
 - Grammar, spelling, and capitalization count .. 10
 - Data types in functions ... 10
 - Style .. 11

Help with R .. 11
 - Help in R ... 11
 - CRAN documentation ... 12
 - Summary and Analysis of Extension Education Program Evaluation in R 12
 - Other online resources ... 12

R Tutorials ... 12

Formal Statistics Books .. 13

Tests for Nominal Variables ... 14

Exact Test of Goodness-of-Fit ... 14
 - Examples in Summary and Analysis of Extension Program Evaluation 14
<table>
<thead>
<tr>
<th>Package Used in This Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>How the Test Works</td>
<td>14</td>
</tr>
<tr>
<td>Binomial Test Examples</td>
<td>14</td>
</tr>
<tr>
<td>Sign Test</td>
<td>16</td>
</tr>
<tr>
<td>Post-hoc Example with Manual Pairwise Tests</td>
<td>17</td>
</tr>
<tr>
<td>Post-hoc Test Alternate Method with Custom Function</td>
<td>18</td>
</tr>
<tr>
<td>Examples</td>
<td>19</td>
</tr>
<tr>
<td>Binomial Test Examples</td>
<td>19</td>
</tr>
<tr>
<td>Multinomial Test Example</td>
<td>20</td>
</tr>
<tr>
<td>How to Do the Test</td>
<td>21</td>
</tr>
<tr>
<td>Binomial Test Example Where Individual Responses are Counted</td>
<td>21</td>
</tr>
<tr>
<td>Power Analysis</td>
<td>22</td>
</tr>
<tr>
<td>Power Analysis for Binomial Test</td>
<td>22</td>
</tr>
</tbody>
</table>

Power Analysis

<table>
<thead>
<tr>
<th>Package Used in This Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examples</td>
<td>23</td>
</tr>
<tr>
<td>Power Analysis for Binomial Test</td>
<td>23</td>
</tr>
<tr>
<td>Power Analysis for Unpaired T-test</td>
<td>23</td>
</tr>
</tbody>
</table>

Chi-square Test of Goodness-of-Fit

<table>
<thead>
<tr>
<th>Package Used in This Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examples in Summary and Analysis of Extension Program Evaluation</td>
<td>24</td>
</tr>
<tr>
<td>How the Test Works</td>
<td>24</td>
</tr>
<tr>
<td>Chi-square Goodness-of-fit Example</td>
<td>24</td>
</tr>
<tr>
<td>Examples: Extrinsic Hypothesis</td>
<td>25</td>
</tr>
<tr>
<td>Example: Intrinsic Hypothesis</td>
<td>26</td>
</tr>
<tr>
<td>Graphing the Results</td>
<td>26</td>
</tr>
<tr>
<td>Simple Bar Plot with Barplot</td>
<td>26</td>
</tr>
<tr>
<td>Bar Plot with Confidence Intervals with ggplot2</td>
<td>28</td>
</tr>
<tr>
<td>How to Do the Test</td>
<td>31</td>
</tr>
<tr>
<td>Chi-square Goodness-of-fit Example</td>
<td>31</td>
</tr>
<tr>
<td>Power Analysis</td>
<td>31</td>
</tr>
<tr>
<td>Power Analysis for Chi-square Goodness-of-fit</td>
<td>31</td>
</tr>
</tbody>
</table>

G-test of Goodness-of-Fit

<table>
<thead>
<tr>
<th>Package Used in This Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examples in Summary and Analysis of Extension Program Evaluation</td>
<td>32</td>
</tr>
<tr>
<td>Examples: Extrinsic Hypothesis</td>
<td>32</td>
</tr>
<tr>
<td>G-test Goodness-of-fit Test with DescTools and RVAideMemoire</td>
<td>32</td>
</tr>
<tr>
<td>G-test Goodness-of-fit Test by Manual Calculation</td>
<td>33</td>
</tr>
<tr>
<td>Examples of G-test Goodness-of-fit Test with DescTools and RVAideMemoire</td>
<td>33</td>
</tr>
<tr>
<td>Example: Intrinsic Hypothesis</td>
<td>34</td>
</tr>
</tbody>
</table>

Chi-square Test of Independence

<table>
<thead>
<tr>
<th>Package Used in This Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examples in Summary and Analysis of Extension Program Evaluation</td>
<td>35</td>
</tr>
<tr>
<td>When to Use It</td>
<td>36</td>
</tr>
<tr>
<td>Example of Chi-square Test with Matrix Created with Read.table</td>
<td>36</td>
</tr>
<tr>
<td>Example of Chi-square Test with Matrix Created by Combining Vectors</td>
<td>36</td>
</tr>
<tr>
<td>Post-hoc Tests</td>
<td>37</td>
</tr>
<tr>
<td>Post-hoc Pairwise Chi-square Tests with Rcompanion</td>
<td>38</td>
</tr>
<tr>
<td>Post-hoc Pairwise Chi-square Tests with Pairwise.Table</td>
<td>38</td>
</tr>
<tr>
<td>Examples</td>
<td>39</td>
</tr>
</tbody>
</table>
Chi-square test of independence with continuity correction and without correction .. 39
Chi-square test of independence .. 40
Graphing the results ... 40
Simple bar plot with error bars showing confidence intervals ... 41
Bar plot with categories and no error bars ... 42
How to do the test .. 45
Chi-square test of independence with data as a data frame ... 45
Power analysis .. 46
Power analysis for chi-square test of independence ... 46

G–test of Independence .. 47
Examples in *Summary and Analysis of Extension Program Evaluation* .. 47
Packages used in this chapter .. 47
When to use it ... 48
G-test example with functions in DescTools and RVAideMemoire ... 48
Post-hoc tests .. 48
 Post-hoc pairwise G-tests with RVAideMemoire .. 49
 Post-hoc pairwise G-tests with pairwise.table ... 49
Examples .. 50
 G-tests with DescTools and RVAideMemoire ... 50
 G-test of independence with data as a data frame ... 52

Fisher’s Exact Test of Independence ... 53
Examples in *Summary and Analysis of Extension Program Evaluation* .. 53
Packages used in this chapter .. 53
Post-hoc tests .. 54
 Post-hoc pairwise Fisher’s exact tests with RVAideMemoire .. 54
Examples .. 55
 Examples of Fisher’s exact test with data in a matrix .. 55
Similar tests – McNemar’s test .. 58
 McNemar’s test with data in a matrix .. 58
 McNemar’s test with data in a data frame ... 58
How to do the test .. 59
 Fisher’s exact test with data as a data frame ... 59
Power analysis ... 60

Small Numbers in Chi-square and G–tests ... 61
Yates’ and William’s corrections in R ... 61

Repeated G–tests of Goodness-of-Fit .. 61
Packages used in this chapter .. 61
How to do the test .. 62
 Repeated G–tests of goodness-of-fit example .. 62
Example .. 64
 Repeated G–tests of goodness-of-fit example .. 64

Cochran–Mantel–Haenszel Test for Repeated Tests of Independence ... 66
Examples in *Summary and Analysis of Extension Program Evaluation* .. 67
Packages used in this chapter .. 67
Examples .. 67
 Cochran–Mantel–Haenszel Test with data read by read.ftable .. 67
 Cochran–Mantel–Haenszel Test with data entered as a data frame .. 69
 Cochran–Mantel–Haenszel Test with data read by read.ftable .. 71
Graphing the results ... 73
Simple bar plot with categories and no error bars ... 73
Bar plot with categories and error bars ... 74

Descriptive Statistics .. 78

Statistics of Central Tendency ... 78
Examples in *Summary and Analysis of Extension Program Evaluation* 78
Packages used in this chapter .. 78
Example .. 78
- Arithmetic mean ... 79
- Geometric mean ... 79
- Harmonic mean .. 79
- Median ... 79
- Mode ... 79
- Summary and describe functions for means, medians, and other statistics 80
- Histogram .. 80
- DescTools to produce summary statistics and plots 81
- DescTools with grouped data ... 83

Statistics of Dispersion .. 84
Example .. 85
- Statistics of dispersion example ... 85
- Range .. 85
- Sample variance .. 85
- Standard deviation .. 86
- Coefficient of variation, as percent ... 86
- Custom function of desired measures of central tendency and dispersion 86

Standard Error of the Mean .. 87
Example .. 87
- Standard error example ... 87

Confidence Limits .. 88
How to calculate confidence limits .. 89
- Confidence intervals for mean with t.test, Rmisc, and DescTools 89
- Confidence intervals for means for grouped data ... 90
- Confidence intervals for mean by bootstrap ... 90
- Confidence interval for proportions ... 92
- Confidence interval for proportions using DescTools 93

Tests for One Measurement Variable .. 94

Student’s t-test for One Sample ... 94
Example .. 94
- One sample t-test with observations as vector .. 94
- How to do the test ... 95
- One sample t-test with observations in data frame 95
- Histogram .. 95
- Power analysis .. 96
- Power analysis for one-sample t-test .. 96

Student’s t-test for Two Samples .. 97
Example .. 97
- Two-sample t-test, independent (unpaired) observations 97
- Plot of histograms ... 98
- Box plots .. 99
Similar tests
- Welch’s t-test
- Power analysis
- Power analysis for t-test

Mann–Whitney and Two-sample Permutation Test
- Mann–Whitney U-test
- Box plots
- Permutation test for independent samples

Chapters Not Covered in This Book
- Homoscedasticity and heteroscedasticity

Type I, II, and III Sums of Squares

One-way Anova
- Examples in Summary and Analysis of Extension Program Evaluation
- Packages used in this chapter
- How to do the test
 - One-way anova example
 - Checking assumptions of the model
 - Tukey and Least Significant Difference mean separation tests (pairwise comparisons)
 - Graphing the results
 - Welch’s anova
- Power analysis
 - Power analysis for one-way anova

Kruskal–Wallis Test
- Examples in Summary and Analysis of Extension Program Evaluation
- Packages used in this chapter
 - Kruskal–Wallis test example
- Example
 - Kruskal–Wallis test example
 - Dunn test for multiple comparisons
 - Nemenyi test for multiple comparisons
 - Pairwise Mann–Whitney U-tests
 - Kruskal–Wallis test example
- How to do the test
 - Kruskal–Wallis test example
- References

One-way Analysis with Permutation Test
- Examples in Summary and Analysis of Extension Program Evaluation
- Packages used in this chapter
 - Permutation test for one-way analysis
 - Pairwise permutation tests

Nested Anova
- Examples in Summary and Analysis of Extension Program Evaluation
- Packages used in this chapter
- How to do the test
 - Nested anova example with mixed effects model (nlme)
 - Mixed effects model with lmer
 - Nested anova example with the aov function

Two-way Anova

ix
<table>
<thead>
<tr>
<th>Package/Method</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examples in Summary and Analysis of Extension Program Evaluation</td>
<td>143</td>
</tr>
<tr>
<td>Packages used in this chapter</td>
<td>144</td>
</tr>
<tr>
<td>How to do the test</td>
<td>144</td>
</tr>
<tr>
<td>Two-way anova example</td>
<td>144</td>
</tr>
<tr>
<td>Post-hoc comparison of least-square means</td>
<td>150</td>
</tr>
<tr>
<td>Graphing the results</td>
<td>151</td>
</tr>
<tr>
<td>Rattlesnake example – two-way anova without replication, repeated measures</td>
<td>154</td>
</tr>
<tr>
<td>Using two-way fixed effects model</td>
<td>154</td>
</tr>
<tr>
<td>Using mixed effects model with nlme</td>
<td>158</td>
</tr>
<tr>
<td>Using mixed effects model with lmer</td>
<td>158</td>
</tr>
<tr>
<td>Two-way Anova with Robust Estimation</td>
<td>161</td>
</tr>
<tr>
<td>Packages used in this chapter</td>
<td>161</td>
</tr>
<tr>
<td>Example</td>
<td>162</td>
</tr>
<tr>
<td>Produce Huber M-estimators and confidence intervals by group</td>
<td>163</td>
</tr>
<tr>
<td>Interaction plot using summary statistics</td>
<td>163</td>
</tr>
<tr>
<td>Two-way analysis of variance for M-estimators</td>
<td>164</td>
</tr>
<tr>
<td>Produce post-hoc tests for main effects with mcp2a</td>
<td>164</td>
</tr>
<tr>
<td>Produce post-hoc tests for main effects with pairwiseRobustTest or pairwiseRobustMatrix</td>
<td>166</td>
</tr>
<tr>
<td>Produce post-hoc tests for interaction effect</td>
<td>166</td>
</tr>
<tr>
<td>Paired t-test</td>
<td>169</td>
</tr>
<tr>
<td>Examples in Summary and Analysis of Extension Program Evaluation</td>
<td>169</td>
</tr>
<tr>
<td>Packages used in this chapter</td>
<td>169</td>
</tr>
<tr>
<td>How to do the test</td>
<td>169</td>
</tr>
<tr>
<td>Paired t-test, data in wide format, flicker feather example</td>
<td>169</td>
</tr>
<tr>
<td>Paired t-test, data in wide format, horseshoe crab example</td>
<td>173</td>
</tr>
<tr>
<td>Paired t-test, data in long format</td>
<td>175</td>
</tr>
<tr>
<td>Permutation test for dependent samples</td>
<td>177</td>
</tr>
<tr>
<td>Power analysis</td>
<td>178</td>
</tr>
<tr>
<td>Power analysis for paired t-test</td>
<td>178</td>
</tr>
<tr>
<td>Wilcoxon Signed-rank Test</td>
<td>178</td>
</tr>
<tr>
<td>Examples in Summary and Analysis of Extension Program Evaluation</td>
<td>178</td>
</tr>
<tr>
<td>Packages used in this chapter</td>
<td>178</td>
</tr>
<tr>
<td>How to do the test</td>
<td>179</td>
</tr>
<tr>
<td>Wilcoxon signed-rank test example</td>
<td>179</td>
</tr>
<tr>
<td>Sign test example</td>
<td>180</td>
</tr>
<tr>
<td>Regressions</td>
<td>182</td>
</tr>
<tr>
<td>Correlation and Linear Regression</td>
<td>182</td>
</tr>
<tr>
<td>How to do the test</td>
<td>182</td>
</tr>
<tr>
<td>Correlation and linear regression example</td>
<td>182</td>
</tr>
<tr>
<td>Correlation</td>
<td>183</td>
</tr>
<tr>
<td>Pearson correlation</td>
<td>183</td>
</tr>
<tr>
<td>Kendall correlation</td>
<td>184</td>
</tr>
<tr>
<td>Spearman correlation</td>
<td>184</td>
</tr>
<tr>
<td>Linear regression</td>
<td>184</td>
</tr>
<tr>
<td>Robust regression</td>
<td>187</td>
</tr>
<tr>
<td>Linear regression example</td>
<td>188</td>
</tr>
<tr>
<td>Power analysis</td>
<td>189</td>
</tr>
<tr>
<td>Power analysis for correlation</td>
<td>189</td>
</tr>
<tr>
<td>Spearman Rank Correlation</td>
<td>190</td>
</tr>
</tbody>
</table>
Example .. 190
Example of Spearman rank correlation ... 190
How to do the test ... 191
Example of Spearman rank correlation ... 191

Curvilinear Regression .. 193
How to do the test ... 193
Polynomial regression ... 193
B-spline regression with polynomial splines ... 199
Nonlinear regression .. 201

Analysis of Covariance ... 206
How to do the test ... 206
Analysis of covariance example with two categories and type II sum of squares 206
Analysis of covariance example with three categories and type II sum of squares 211

Multiple Regression .. 216
How to do multiple regression ... 217
Multiple correlation ... 217
Multiple regression ... 221

Simple Logistic Regression .. 228
How to do the test ... 228
Logistic regression example ... 230
Logistic regression example ... 233
Logistic regression example with significant model and abbreviated code 238

Multiple Logistic Regression .. 242
How to do multiple logistic regression ... 242
Multiple correlation ... 243
Multiple logistic regression example ... 246

Multiple tests ... 256

Multiple Comparisons .. 256
How to do the tests ... 256
Multiple comparisons example with 25 p-values .. 257
Multiple comparisons example with five p-values .. 260

Miscellany .. 263

Chapters Not Covered in this Book .. 263

Other Analyses .. 264

Contrasts in Linear Models .. 264
Contrasts within linear models .. Error! Bookmark not defined.
Example for single degree-of-freedom contrasts .. 264
Example with lsmeans .. 265
Example with multcomp ... 266
Example for global F-test within a group of treatments .. 268
Tests of contrasts with lsmeans ... 269
Tests of contrasts with multcomp ... 271
Tests of contrasts within aov ... 273

Cate–Nelson Analysis .. 275
Custom function to develop Cate–Nelson models ... 275
Purpose of This Book

This book is intended to be a supplement for The Handbook of Biological Statistics by John H. McDonald. It provides code for the R statistical language for some of the examples given in the Handbook. It does not describe the uses of, explanations for, or cautions pertaining to the analyses. For that information, you should consult the Handbook before using the analyses presented here.

The Handbook for Biological Statistics

This Companion follows the .pdf version of the third edition of the Handbook of Biological Statistics.

The Handbook provides clear explanations and examples of some the most common statistical tests used in the analysis of experiments. While the examples are taken from biology, the analyses are applicable to a variety of fields.

The Handbook provides examples primarily with the SAS statistical package, and with online calculators or spreadsheets for some analyses. Since SAS is a commercial package that students or researchers may not have access to, this Companion aims to extend the applicability of the Handbook by providing the examples in R, which is a free statistical package.

Also, the Handbook can be accessed without cost at www.biostathandbook.com/. However, the reader should be aware that the online version may be updated since the third edition of the book.

About the Author of this Companion

I have tried in this book to give the reader examples that are both as simple as possible, and that show some of the options available for the analysis. My goal for most examples is to make things comprehensible for the user without extensive R experience. The reader should realize that these goals may be partially frustrated either by the peculiarities in the R language or by the complexity required for the example.
I am neither a statistician nor an R programmer, so all advice and code in the book comes without guarantee. I’m happy to accept suggestions or corrections. Send correspondence to mangiafico@njaes.rutgers.edu.

About R

R is a free, open source, and cross-platform programming language that is well suited for statistical analyses. This means you can download R to your Windows, Mac OS, or Linux computer for free. It also means that, in theory, you can look at the code behind any of the analyses it performs to better understand the process, or to modify the code for your own purposes.

R is being used more and more in educational, academic, and commercial settings. A few advantages of working with R as a student, teacher, or researcher include:

- R functions return limited output. This helps prevent students from sorting through a lot of output they may not understand, and in essence requires the user to know what output they’re asking R to produce.

- Since all functions are open source, the user has access to see how pre-defined functions are written.

- There are powerful packages written for specific type of analyses.

- There are lots of free resources available online.

- It can also be used online without installing software.

For a brief summary of some the advantages of R from the perspective of a graduate student, see https://thetarzan.wordpress.com/2011/07/15/why-use-r-a-grad-students-2-cents/.

It is also worth mentioning a few drawbacks with using R. New users are likely to find the code difficult to understand. Also, I think that while there are a plethora of examples for various analyses available online, it may be difficult as a beginner to adapt these examples to her own data. One goal of this book is to help alleviate these difficulties for beginners. I have some further thoughts below on avoiding pitfalls in R.

Obtaining R

Standard installation
To download and install R, visit cran.r-project.org/. There you will find links for installation on Linux, Mac OS, and Windows operating systems.
R Studio
I also recommend using R Studio. This software is an environment for R that makes it easier to see code, output, datasets, plots, and help files together on one screen. www.rstudio.com/products/rstudio/. It is also possible to install R Studio as a portable application.

Portable application
R can be installed as a portable application. This is useful in cases where you don’t want to install R on a computer, but wish to run it from a portable drive. See portableapps.com/node/32898 or sourceforge.net/projects/rportable/. My portable installation of R with a handful of added packages is about 250 MB. The version on R Studio I have is about 400 MB. So, 1 GB of space on a usb drive is probably sufficient for the software along with additional installed packages and projects.

R Online: R Fiddle
It is also possible to access R online, without needing to install software. One example of this is R Fiddle: www.r-fiddle.org/. R Fiddle also works with common add-on packages, though I have had it refuse to use a couple of less common ones.

A Few Notes to Get Started with R

Packages used in this chapter
The following commands will install these packages if they are not already installed:

```r
if(!require(dplyr)){install.packages("dplyr")}
if(!require(psych)){install.packages("psych")}
```

A cookbook approach
The examples in this book follow a “cookbook” approach as much as possible. The reader should be able to modify the examples with her own data, and change the options and variable names as needed. This is more obvious with some examples than others, depending on the complexity of the code.

Color coding in this book
The text in blue in this book is R code that can be copied, pasted, and run in R. The text in red is the expected result, and should not be run. In most cases I have truncated the results and included only the most relevant parts. Comments are in green. It is fine to run comments, but they have no effect on the results.

Copying and pasting code
From the website
Copying the R code pieces from the website version of this book should work flawlessly. Code can be copied from the webpages and pasted into the R console, the R Studio console, the R Studio editor, or a plain text file. All line breaks and formatting spaces should be preserved.

The only issue you may encounter is that if you paste code into the R Studio editor, leading spaces may be added to some lines. This is not usually a problem, but a way to avoid this is to paste the code into a plain text editor, save that file as a .R file, and open it from R Studio.

From the pdf
Copying the R code from the pdf version of this book may work less perfectly. Formatting spaces and even line breaks may be lost. Different pdf readers may behave differently.

It may help to paste the copied code into a plain text editor to clean it up before pasting into R or saving it as a .R file. Also, if your pdf reader has a select tool that allows you to select text in a rectangle, that works better in some readers.

A sample program
The following is an example of code for R that creates a vector called x and a vector called y, performs a correlation test between x and y, and then plots y vs. x.

This code can copied and pasted into the console area of R or R Studio, or into the editor area of R Studio or R Fiddle and run. You should get the output from the correlation test and the graphical output of the plot.

\[
x = c(1,2,3,4,5,6,7,8,9) \quad \# \text{create a vector of values and call it } x
\]
\[
y = c(9,7,8,6,7,5,4,3,1) \quad \# \text{call it } x
\]

\[
\text{cor.test(x,y)} \quad \# \text{perform correlation test}
\]

\[
\text{plot(x,y)} \quad \# \text{plot } y \text{ vs. } x
\]

You can run fairly large chunks of code with R, though it is probably better to run smaller pieces, examining the output before proceeding to the next piece.

This kind of code can be saved as a file in the editor section of R Studio, or can be stored separately as a plain text file. By convention files for R code are saved as .R files. These files can be opened and edited with either a plain text editor or with the R Studio editor.

Assignment operators
In my examples I will use an equal sign, =, to assign a value to a variable.

\[
\text{height} = 127.5
\]

In examples you find elsewhere, you will more likely see a left arrow, <-, used as the assignment operator.

\[
\text{height} <- 127.5
\]
These are essentially equivalent, but I think the equal sign is more readable for a beginner.

Comments
Comments are indicated with a number sign, #. Comments are for human readers, and are not processed by R.

Installing and loading packages
Some of the packages used in this book do not come with R automatically, but need to be installed as add-on packages. For example, if you wanted to use a function in the *psych* package to calculate the geometric mean of \(x \) in the sample program above:

\[
x = c(1,2,3,4,5,6,7,8,9)
\]

First you would need to install the package *psych*:

```r
install.packages("psych")
```

Then load the package:

```r
library(psych)
```

You may then use the functions included in the package:

```r
generalic.mean(x)
```

[1] 4.147166

In future sessions, you will need only to load the package; it should still be in the library from the initial installation.

If you see an error like the following, you may have misspelled the name of the package, or the package has not been installed.

```r
library(psych)
```

```
Error in library(psych) : there is no package called ‘psych’
```

Data types
There are several data types in R. Most commonly, the functions we are using will ask for input data to be a vector, a matrix, or a data frame. Data types won’t be discussed extensively here, but the examples in this book will read the data as the appropriate data type for the selected analysis.

Creating data frames from a text string of data
For certain analyses you will want to select a variable from within a data frame. In most examples using data frames, I’ll create the data frame from a text string that allows us to arrange the data in columns and rows, as we normally visualize data.
Here, `Input` is just a text string that will be converted to a data frame with the `read.table` function. Note that the text for the table is enclosed in simple double quotes and parentheses. `read.table` is pretty tolerant of extra spaces or blank lines. But if we convert a data frame to a matrix—which we will later—with `as.matrix`—I’ve had errors from trailing spaces at the ends of lines.

Values in the table that will have spaces or special characters can be enclosed in simple single quotes (e.g. 'Spongebob & Patrick').

```r
Input = c("Sex  Height
male  175
male  176
female 162
female 165")
```

```r
d1 = read.table(textConnection(Input), header=TRUE)
d1

   Sex Height
1  male    175
2  male    176
3 female    162
4 female    165
```

Reading data from a file

R can also read data from a separate file. For longer data sets or complex analyses, it is helpful to keep data files and r code files separate. For example,

```r
d2 = read.table("male-female.dat", header=TRUE)
```

would read in data from a file called *male-female.dat* found in the working directory. In this case the file could be a space-delimited text file:

```
Sex  Height
male 175
male 176
female 162
female 165
```

Or

```r
d2 = read.table("male-female.csv", header=TRUE, sep="","\n")
```

for a comma-separated file.

```
Sex,Height
```
A Few Notes to Get Started with R

R Studio also has an easy interface in the Tools menu to import data from a file.

The `getwd` function will show the location of the working directory, and `setwd` can be used to set the working directory.

```r
getwd()

[1] "C:/Users/Salvatore/Documents"
```

```r
setwd("C:/Users/Salvatore/Desktop")
```

Alternatively, file paths or URLs can be designated directly in the `read.table` function.

Variables within data frames

For the data frame `D1` created above, to look at just the variable `Sex` in this data frame:

```r
D1$ Sex

# Note: the space is optional

[1] male  male  female female
Levels: female male
```

Note that `D1$Height` is a vector of numbers.

```r
D1$ Height

[1] 175 176 162 165
```

So if you wanted the mean for this variable:

```r
mean(D1$ Height)

[1] 169.5
```
Using *dplyr* to create new variables in data frames

The standard method to define new variables in data frames is to use the `data.frame$ variable syntax. So if we wanted to add a variable to the D1 data frame above which would double `Height`:

```r
D1$ Double = D1$ Height * 2  # Spaces are optional
```

<table>
<thead>
<tr>
<th>Sex</th>
<th>Height</th>
<th>Double</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>175</td>
<td>350</td>
</tr>
<tr>
<td>2</td>
<td>176</td>
<td>352</td>
</tr>
<tr>
<td>3</td>
<td>162</td>
<td>324</td>
</tr>
<tr>
<td>4</td>
<td>165</td>
<td>330</td>
</tr>
</tbody>
</table>

Another method is to use the *mutate* function in the *dplyr* package:

```r
library(dplyr)
D1 =
mutate(D1,
       Triple = Height*3,
       Quadruple = Height*4)
```

<table>
<thead>
<tr>
<th>Sex</th>
<th>Height</th>
<th>Double</th>
<th>Triple</th>
<th>Quadruple</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>175</td>
<td>350</td>
<td>525</td>
<td>700</td>
</tr>
<tr>
<td>2</td>
<td>176</td>
<td>352</td>
<td>528</td>
<td>704</td>
</tr>
<tr>
<td>3</td>
<td>162</td>
<td>324</td>
<td>486</td>
<td>648</td>
</tr>
<tr>
<td>4</td>
<td>165</td>
<td>330</td>
<td>495</td>
<td>660</td>
</tr>
</tbody>
</table>

The *dplyr* package also has functions to select only certain columns in a data frame (*select* function) or to filter a data frame by the value of some variable (*filter* function). It can be helpful for manipulating data frames.

In the examples in this book, I will use either the `$` syntax or the *mutate* function in *dplyr*, depending on which I think makes the example more comprehensible.

Extracting elements from the output of a function

Sometimes it is useful to extract certain elements from the output of an analysis. For example, we can assign the output from a binomial test to a variable we'll call *Test*.

```r
Test = binom.test(7, 12, 3/4,
                  alternative="less",
                  conf.level=0.95)
```

To see the value of *Test*:

```r
Test
```

Exact binomial test
number of successes = 7, number of trials = 12, p-value = 0.1576
95 percent confidence interval:
0.0000000 0.8189752

To see what elements are included in Test:

```r
names(Test)
```

```
[1] "statistic"   "parameter"   "p.value"     "conf.int"    "estimate"
"null.value"   "alternative"
[8] "method"      "data.name"
```

Or with more details:

```r
str(Test)
```

To view the p-value from Test:

```r
Test$ p.value
```

```
[1] 0.1576437
```

To view the confidence interval from Test:

```r
Test$ conf.int
```

```
[1] 0.0000000 0.8189752
[1] 0.95
```

To view the upper confidence limit from Test:

```r
Test$ conf.int[2]
```

```
[1] 0.8189752
```

Exporting graphics

R has the ability to produce a variety of plots. Simple plots can be produced with just a few lines of code. These are useful to get a quick visualization of your data or to check on the distribution of residuals from an analysis. More in-depth coding can produce publication-quality plots.

In the Rstudio **Plots** window, there is an **Export** icon which can be used to save the plot as image or pdf file. A method I use is to export the plot as pdf and then open this pdf with either Adobe Photoshop or the free alternative, GIMP (www.gimp.org/). These programs allow you to import the pdf at whatever resolution you need, and then crop out extra white space.
The appearance of exported plots will change depending on the size and scale of exported file. If there are elements missing from a plot, it may be because the size is not ideal. Changing the export size is also an easy way to adjust the size of the text of a plot relative to the other elements.

An additional trick in Rstudio is to change the size of the plot window after the plot is produced, but before it is exported. Sometimes this can get rid of problems where, for example, words in a plot legend are cut off.

Finally, if you export a plot as a pdf, but still need to edit it further, you can open it in Inkscape, ungroup the plot elements, adjust some plot elements, and then export as a high-resolution bitmap image. Just be sure you don’t change anything important, like how the data line up with the axes.

Avoiding Pitfalls in R

Grammar, spelling, and capitalization count
Probably the most common problems in programming in any language are syntax errors, for example, forgetting a comma or misspelling the name of a variable or function.

Be sure to include quotes around names requiring them; also be sure to use straight quotes (") and not the smart quotes that some word processors use automatically. It is helpful to write your R code in a plain text editor or in the editor window in R Studio.

Data types in functions
Probably the biggest cause of problems I had when I first started working with R was trying to feed functions the wrong data type. For example, if a function asks for the data as a matrix, and you give it a data frame, it won’t work.

A more subtle error I’ve encountered is when a function is expecting a variable to be a factor vector, and it’s really a character (“chr”) vector.

For instance if we create a variable in the global environment with the same values as Sex and call it Gender, it will be a character vector.

```
Gender = c("male", "male", "female", "female")
str(Gender)   # what is the structure of this variable?
chr [1:4] "male" "male" "female" "female"
```

While in the data frame, Sex was read in as a factor vector by default:

```
str(D1$ Sex)
Factor w/ 2 levels "female","male": 2 2 1 1
```
One of the nice things about using R Studio is that it allows you to look at the structure of data frames and other objects in the Environment window.

Data types can be converted from one data type to another, but it may not be obvious how to do some conversions. Functions to convert data types include `as.factor`, `as.numeric`, and `as.character`.

Style
There isn’t an established style for programming in R in many respects, such as if variable names should be capitalized. But there is a Google R Users Style Guide, for those who are interested. I don’t necessarily agree with all the recommendations there. And in practice, people use different style conventions. google.github.io/styleguide/Rguide.xml.

Help with R

It’s always a good idea to check the help information for a function before using it. Don’t necessarily assume a function will perform a test as you think it will. The help information will give the options available for that function, and often those options make a difference with how the test is carried out.

Help in R

In order to see the help file for the `chisq.test` function:

```r
?chisq.test
```

In order to specify the `chisq.test` function in the `stats` package, you would use:

```r
?stats::chisq.test
```

or

```r
help(chisq.test, package=stats)
```

In order to search all installed packages for a term:

```r
??"chi-square"
```

In order to view the help for a package

```r
help(package=psych)
```
CRAN documentation
Documentation for packages are also available in a .pdf format, which may be more convenient than using the help within R. Also very helpful, some packages include vignettes, which describe how a package might be used.

For a list of available packages, visit cran.r-project.org/web/packages/available_packages_by_name.html.

And clicking on the link for the psych package, will bring up a page with a link for the .pdf documentation, two .pdf vignettes, and other information.

Summary and Analysis of Extension Education Program Evaluation in R
Most of the analyses in this book are also presented in Summary and Analysis of Extension Education Program Evaluation in R (SAEEPER). It may be useful for the reader to consult that book for additional examples and discussion.

Other online resources
Since there are many good resources for R online, an internet search for your question or analysis including the term “r” will often lead to a solution. The reader is cautioned, however, to always check the original R documentation on functions to be sure it will perform an analysis as the user desires.

A convenient tool is the RSiteSearch function, which will open a browser window and search for a term in functions and vignettes across a variety of sources:

RSiteSearch("chi-square test")

This tool can also be accessed from: http://search.r-project.org/nmz.html.

R Tutorials

The descriptions of importing and manipulating data and results in this section of this book don’t even scratch the surface of what is possible with R. Going beyond this very brief introduction, however, is beyond the scope of this book. I have tried to provide only enough information so that the reader unfamiliar with R will find the examples in the rest of the book comprehensible.

Luckily, there are many resources available for users wishing to better understand how to program in R, manipulate data, and perform more varied statistical analyses.

One free online resource I’ve found helpful is Quick-R (www.statmethods.net/).

CRAN hosts a collection of R manuals (cran.r-project.org/manuals.html). One that might be helpful is An Introduction to R by Venables.
CRAN also hosts a collection of contributed documentation (cran.r-project.org/other-docs.html), in several languages, which may prove helpful.

If readers wish to purchase a more-comprehensive and well-written textbook, *The R Book* by Michael Crawley is one option.

Formal Statistics Books

When describing a particular statistical analysis—especially one that your readers may not be familiar with—it’s a good idea to cite an authoritative statistical source. A few that may be useful for this purpose:

- *Biostatistical Analysis* by Jerrold Zar
- *Introduction to Biostatistics* by Sokal and Rohlf
- *Categorical Data Analysis* by Alan Agresti
- *Mixed-Effects Models in S and S-Plus* by José Pinheiro and Douglas Bates
Tests for Nominal Variables

Exact Test of Goodness-of-Fit

The exact test goodness-of-fit can be performed with the `binom.test` function in the native `stats` package. The arguments passed to the function are: the number of successes, the number of trials, and the hypothesized probability of success. The probability can be entered as a decimal or a fraction. Other options include the confidence level for the confidence interval about the proportion, and whether the function performs a one-sided or two-sided (two-tailed) test. In most circumstances, the two-sided test is used.

Examples in *Summary and Analysis of Extension Program Evaluation*

SAEEPER: Goodness-of-Fit Tests for Nominal Variables

Packages used in this chapter

The following commands will install these packages if they are not already installed:

```r
if(!require(XNomial)){install.packages("XNomial")}
if(!require(BSDA)){install.packages("BSDA")}
if(!require(pwr)){install.packages("pwr")}
```

Introduction

When to use it

Null hypothesis

See the *Handbook* for information on these topics.

How the test works

Binomial test examples

```r
### In this example:
###   2 is the number of successes
###   10 is the number of trials
###   0.5 is the hypothesized probability of success

dbinom(2, 10, 0.5) # Probability of single event only!
                     # Not binomial test!
[1] 0.04394531

binom.test(2, 10, 0.5,
           alternative="less",
           conf.level=0.95)

p-value = 0.05469
```
```
binom.test(2, 10, 0.5,
  alternative="two.sided",  # Two-sided test
  conf.level=0.95)

p-value = 0.1094
```

Probability density plot

````
### Probability density plot, binomial distribution, p. 31

# In this example:
# You can change the values for trials and prob
# You can change the values for xlab and ylab

trials = 10
prob = 0.5

x = seq(0, trials)  # x is a sequence, 1 to trials
y = dbinom(x, size=trials, p=prob)  # y is the vector of heights

barplot (height=y,
  names.arg=x,
  xlab="Number of uses of right paw",
  ylab="Probability under null hypothesis")
```

![Probability density plot](image)
Comparing doubling a one-sided test and using a two-sided test

```r
### Cat hair example, exact binomial test, p. 31–32
### Compares performing a one-sided test and doubling the
### probability, and performing a two-sided test
### -----------------------------------

binom.test(7, 12, 3/4, alternative="less", conf.level=0.95)

p-value = 0.1576

Test = binom.test(7, 12, 3/4, alternative="less", conf.level=0.95) # Create an object called
# Test with the test
# results.

2 * Test$ p.value # This extracts the p-value from the
# test result, we called Test
# and multiplies it by 2

[1] 0.3152874

binom.test(7, 12, 3/4, alternative="two.sided", conf.level=0.95)

p-value = 0.1893 # Equal to the "small p values" method in the Handbook
# # #
```

Sign test
The following is an example of the two-sample dependent-samples sign test. The data are arranged as a data frame in which each row contains the values for both measurements being compared for each experimental unit. This is sometimes called “wide format” data. The `SIGN.test` function in the BSDA package is used. The option `md=0` indicates that the expected difference in the medians is 0 (null hypothesis). This function can also perform a one-sample sign test.

```r
### Tree beetle example, two-sample sign test, p. 34–35
### -----------------------------------

Input =  
Row | Angiosperm.feeding | A.count | Gymnosperm.feeding | G.count |
--- | ------------------- | ------- | ------------------- | ------- |
1   | Corthylina         | 458     | Pityophthorus      | 200     |
2   | Scolytinae         | 5200    | Hylastini_Tomacini | 180     |
3   | Acanthotomicus_P   | 123     | Orhotomicus        | 11      |
4   | Xyleborini_D       | 1500    | Ipini              | 195     |
5   | Apion              | 1500    | Antliarhininae     | 12      |
6   | Belinae            | 150     | Allocoryninae_Oxycorinae | 30      |
7   | H_Curculionidae   | 44002   | Nemonychidae       | 85      |
```
Exact Test of Goodness-of-Fit

An R Companion for the Handbook of Biological Statistics

Data = read.table(textConnection(Input),header=TRUE)

library(BSDA)

SIGN.test(x = Data$ A.count, y = Data$ B.count, md = 0, alternative = "two.sided", conf.level = 0.95)

p-value = 0.001953

#

Exact multinominal test
See example below in the “Examples” section.

Post-hoc test
Post-hoc example with manual pairwise tests
A multinominal test can be conducted with the xmulti function in the package XNomial. This can be followed with the individual binominal tests for each proportion, as post-hoc tests.

###--
Post-hoc example, multinominal and binominal test, p. 33
###--

observed = c(72, 38, 20, 18)
expected = c(9, 3, 3, 1)

library(XNomial)

xmulti(observed, expected, detail = 2) # 2: Reports three types of p-value

P value (LLR) = 0.003404 # log-likelihood ratio
P value (Prob) = 0.002255 # exact probability
P value (Chisq) = 0.001608 # Chi-square probability

Note last p-value below agrees with Handbook

successes = 72
total = 148
numerator = 9
denominator = 16
binom.test(successes, total, numerator/denominator, alternative="two.sided", conf.level=0.95)

p-value = 0.06822

successes = 38
total = 148
numerator = 3
denominator = 16

binom.test(successes, total, numerator/denominator, alternative="two.sided", conf.level=0.95)

p-value = 0.03504

successes = 20
total = 148
numerator = 3
denominator = 16

binom.test(successes, total, numerator/denominator, alternative="two.sided", conf.level=0.95)

p-value = 0.1139

successes = 18
total = 148
numerator = 1
denominator = 16

binom.test(successes, total, numerator/denominator, alternative="two.sided", conf.level=0.95)

p-value = 0.006057

#

Post-hoc test alternate method with custom function
When you need to do multiple similar tests, however, it is often possible to use the programming capabilities in R to do the tests more efficiently. The following example may be somewhat difficult to follow for a beginner. It creates a data frame and then adds a column called p.Value that contains the p-value from the binom.test performed on each row of the data frame.

Post-hoc example, multinomial and binomial test, p. 33
Alternate method for multiple tests

Input =("
Successes Total Numerator Denominator
72 148 9 16
38 148 3 16
20 148 3 16
18 148 1 16

D1 = read.table(textConnection(Input),header=TRUE)

Fun = function (x){
 binom.test(x["Successes"],x["Total"],
 x["Numerator"]/x["Denominator"])$ p.value
}

D1$p.Value = apply(D1, 1, Fun)

D1

Successes Total Numerator Denominator p.Value
1 72 148 9 16 0.068224131
2 38 148 3 16 0.035040215
3 20 148 3 16 0.113911643
4 18 148 1 16 0.006057012

#

Intrinsic hypothesis
Assumptions
See the Handbook for information on these topics.

Examples
Binomial test examples

Parasitoid examples, exact binomial test, p. 34

binom.test(10, (17+10), 0.5,
 alternative="two.sided",
 conf.level=0.95)

p-value = 0.2478

binom.test(36, (7+36), 0.5,
 alternative="two.sided",
 conf.level=0.95)

p-value = 8.963e-06

#
Drosophila example, exact binomial test, p. 34

```r
binom.test(140, (106+140), 0.5,
  alternative="two.sided",
  conf.level=0.95)
```

```
p-value = 0.03516
```

First Mendel example, exact binomial test, p. 35

```r
binom.test(428, (428+152), 0.75, alternative="two.sided",
  conf.level=0.95)
```

```
p-value = 0.5022 # Value is different than in the Handbook
```

Alternate method with XNomial package

```r
observed = c(428, 152)
expected = c(3, 1)

library(XNomial)

xmulti(observed, expected, detail = 2) # 2: reports three types of p-value
```

```
P value (LLR) = 0.5331 # log-likelihood ratio
P value (Prob) = 0.5022 # exact probability
P value (Chisq) = 0.5331 # Chi-square probability
```

Note last p-value below agrees with Handbook

```
```

Multinomial test example

Second Mendel example, multinomial exact test, p. 35–36
and SAS example, p. 38

```r
observed = c(315, 108, 101, 32)
expected = c(9, 3, 3, 1)

library(xNomial)

xmulti(observed, expected, detail = 2)
# reports three types of p-value

P value (LLR) = 0.9261  # log-likelihood ratio
P value (Prob) = 0.9382  # exact probability
P value (Chisq) = 0.9272  # Chi-square probability

### Note last p-value below agrees with Handbook, 
### and agrees with SAS Exact Pr>=ChiSq

# # #
```

Graphing the results

Graphing is shown in the “Chi-square Goodness-of-Fit” section.

Similar tests

The *G*–test goodness-of-fit and *chi-square goodness-of-fit* are presented elsewhere in this book.

How to do the test

Binomial test example where individual responses are counted

```r
Input =("Paw
right
left
right
right
right
left
right
right
right
right
")

Gus = read.table(textConnection(Input),header=TRUE)

Successes = sum(Gus$ Paw == "left")  # Note the == operator
```
`Failures = sum(Gus$ Paw == "right")`

`Total = Successes + Failures`

`Expected = 0.5`

`binom.test(Successes, Total, Expected, alternative="less", conf.level=0.95)` # One-sided test!

\[p\text{-value} = 0.05469 \]

`binom.test(Successes, Total, Expected, alternative="two.sided", conf.level=0.95)` # Two-sided test

\[p\text{-value} = 0.1094 \]

`R` code for the other `SAS` example is shown in the examples in previous sections.

Power analysis

`Power analysis for binomial test`

```r
### Power analysis, binomial test, cat paw, p. 38
### --------------------------------------------------------------

P0 = 0.50
P1 = 0.40
H = ES.h(P0, P1)  # This calculates effect size

library(pwr)

pwr.p.test(
  h=H,
  n=NULL,  # NULL tells the function to
  sig.level=0.05,  # calculate this value
  power=0.80,  # 1 minus Type II probability
  alternative="two.sided"
)

n = 193.5839  # Slightly different than in Handbook
```

#
Power Analysis

Packages used in this chapter
The following commands will install these packages if they are not already installed:

```r
if(!require(pwr)){install.packages("pwr")}
```

Introduction

Parameters

How it works
See the Handbook for information on these topics.

Examples

Power analysis for binomial test

```r
### ------------------------------------------
### Power analysis, binomial test, pea color, p. 43
### ------------------------------------------

P0 = 0.75
P1 = 0.78
H = ES.h(P0,P1)  # This calculates effect size

library(pwr)
pwr.p.test(h=H,
            n=NULL,  # NULL tells the function to
            sig.level=0.05,  # calculate this
            power=0.90,  # 1 minus Type II probability
            alternative="two.sided")

n = 2096.953  # Somewhat different than in Handbook
```

Power analysis for unpaired t-test

```r
### ------------------------------------------
### Power analysis, t-test, student height, pp. 43-44
### ------------------------------------------

M1 = 66.6  # Mean for sample 1
M2 = 64.6  # Mean for sample 2
S1 = 4.8  # Std dev for sample 1
S2 = 3.6  # Std dev for sample 2

Cohen.d = (M1 - M2)/sqrt(((S1^2) + (S2^2))/2)
```
library(pwr)

pwr.t.test(
 n = NULL, # Observations in _each_ group
 d = Cohen.d, # Type I probability
 sig.level = 0.05, # 1 minus Type II probability
 power = 0.80, # Change for one- or two-sample
 type = "two.sample", # # #
 alternative = "two.sided")

Two-sample t test power calculation

n = 71.61288

NOTE: n is number in *each* group 71.61288

#

How to do power analyses
Methods are shown in the previous examples.

Chi-square Test of Goodness-of-Fit

Examples in Summary and Analysis of Extension Program Evaluation
SAEPEER: Goodness-of-Fit Tests for Nominal Variables

Packages used in this chapter
The following commands will install these packages if they are not already installed:

```r
if(!require(dplyr)){install.packages("dplyr")}
if(!require(ggplot2)){install.packages("ggplot2")}
if(!require(grid)){install.packages("grid")}
if(!require(pwr)){install.packages("pwr")}
```

When to use it
Null hypothesis
See the *Handbook* for information on these topics.

How the test works
Chi-square goodness-of-fit example

```r
### Drosophila example, Chi-square goodness-of-fit, p. 46
### --------------------------------------------------------------
observed = c(770, 230)                  # observed frequencies
expected = c(0.75, 0.25)               # expected proportions
```
Chisq.test(x = observed,
 p = expected)

 x-squared = 2.1333, df = 1, p-value = 0.1441

 # # #

Post-hoc test
Assumptions
See the Handbook for information on these topics.

Examples: extrinsic hypothesis

--
Crossbill example, Chi-square goodness-of-fit, p. 47
--

observed = c(1752, 1895) # observed frequencies
expected = c(0.5, 0.5) # expected proportions

chisq.test(x = observed,
 p = expected)

 x-squared = 5.6071, df = 1, p-value = 0.01789

 # # #

--
Rice example, Chi-square goodness-of-fit, p. 47
--

observed = c(772, 1611, 737)
expected = c(0.25, 0.50, 0.25)

chisq.test(x = observed,
 p = expected)

 x-squared = 4.1199, df = 2, p-value = 0.1275

 # # #

--
Bird foraging example, Chi-square goodness-of-fit, pp. 47–48
--

observed = c(70, 79, 3, 4)
expected = c(0.54, 0.40, 0.05, 0.01)

chisq.test(x = observed,
 p = expected)
Example: intrinsic hypothesis

```r
### Intrinsic example, Chi-square goodness-of-fit, p. 48
###
observed = c(1203,  2919,  1678)
expected.prop = c(0.211, 0.497, 0.293)
expected.count = sum(observed)*expected.prop
chi2 = sum(((observed- expected.count)^2/ expected.count)

chi2

[1] 1.082646
pchisq(chi2,
  df=1,
  lower.tail=FALSE)

[1] 0.2981064
```

Graphing the results

The first example below will use the `barplot` function in the native `graphics` package to produce a simple plot. First we will calculate the observed proportions and then copy those results into a matrix format for plotting. We'll call this matrix `Matriz`. See the “Chi-square Test of Independence” section for a few notes on creating matrices.

The second example uses the package `ggplot2`, and uses a data frame instead of a matrix. The data frame is named `Forage`. For this example, the code calculates confidence intervals and adds them to the data frame. This code could be skipped if those values were determined manually and put into a data frame from which the plot could be generated.

Sometimes factors will need to have the order of their levels specified for `ggplot2` to put them in the correct order on the plot, as in the second example. Otherwise R will alphabetize levels.

Simple bar plot with barplot

```r
### Simple bar plot of proportions, p. 49
### Uses data in a matrix format
```
Chi-square Test of Goodness-of-Fit

```r
# Re-enter data as a matrix
Input = c("Value     Douglas.fir  Ponderosa.pine  Grand.fir  Western.larch
Observed  0.4487179    0.5064103 0.01923077  0.02564103
Expected  0.5400000    0.4000000 0.05000000  0.01000000"")

Matriz = as.matrix(read.table(textConnection(Input),
                            header=TRUE, 
                            row.names=1))
Matriz

Douglas fir    Ponderosa pine  Grand fir  Western larch
Observed  0.4487179    0.5064103 0.01923077  0.02564103
Expected  0.5400000    0.4000000 0.05000000  0.01000000

barplot(Matriz, 
            beside=TRUE, 
            legend=TRUE, 
            ylim=c(0, 0.6),
            xlab="Tree species", 
            ylab="Foraging proportion")
```

Bar plot with confidence intervals with ggplot2

The plot below is a bar chart with confidence intervals. The code calculates confidence intervals. This code could be skipped if those values were determined manually and put into a data frame from which the plot could be generated.

Sometimes factors will need to have the order of their levels specified for ggplot2 to put them in the correct order on the plot. Otherwise R will alphabetize levels.

Graph example, Chi-square goodness-of-fit, p. 49
Using ggplot2
Plot adapted from:
shinyapps.stat.ubc.ca/r-graph-catalog/

Input =(""}
Tree Value Count Total Proportion Expected 'Douglas fir' Observed 70 156 0.4487 0.54 'Douglas fir' Expected 54 100 0.54 0.54 'Ponderosa pine' Observed 79 156 0.5064 0.40 'Ponderosa pine' Expected 40 100 0.40 0.40 'Grand fir' Observed 3 156 0.0192 0.05 'Grand fir' Expected 5 100 0.05 0.05 'Western larch' Observed 4 156 0.0256 0.01 'Western larch' Expected 1 100 0.01 0.01 ")

Forage = read.table(textConnection(Input),header=TRUE)
Specify the order of factor levels. Otherwise R will alphabetize them.

```r
library(dplyr)

Forage =
  mutate(Forage,
    Tree = factor(Tree, levels=unique(Tree)),
    Value = factor(Value, levels=unique(Value)))
```

Add confidence intervals

```r
Forage =
  mutate(Forage,
    low.ci = apply(Forage[c("Count", "Total", "Expected")],
      1,
      function(x)
        binom.test(x["Count"], x["Total"], x["Expected"]
          )$ conf.int[1]),
    upper.ci = apply(Forage[c("Count", "Total", "Expected")],
      1,
      function(x)
        binom.test(x["Count"], x["Total"], x["Expected"]
          )$ conf.int[2]))

Forage$ low.ci [Forage$ Value == "Expected"] = 0
Forage$ upper.ci [Forage$ Value == "Expected"] = 0
```

Plot adapted from:

```r
library(ggplot2)
library(grid)

ggplot(Forage,
   aes(x = Tree, y = Proportion, fill = Value,
        ymax=upper.ci, ymin=low.ci)) +
  geom_bar(stat="identity", position = "dodge", width = 0.7) +
  geom_bar(stat="identity", position = "dodge",
           colour = "black", width = 0.7,
           show_guide = FALSE) +
  scale_y_continuous(breaks = seq(0, 0.60, 0.1),
```
Bar plot of proportions vs. categories. Error bars indicate 95% confidence intervals for each observed proportion.
Similar tests

Chi-square vs. G–test

See the Handbook for information on these topics. The exact test of goodness–of–fit, the G–test of goodness–of–fit, and the exact test of goodness–of–fit tests are described elsewhere in this book.

How to do the test

Chi-square goodness–of–fit example

```r
### Pea color example, Chi-square goodness-of-fit, pp. 50–51
###

observed = c(423, 133)
expected = c(0.75, 0.25)

chisq.test(x = observed,
 p = expected)

  X-squared = 0.3453, df = 1, p-value = 0.5568

#     #     #
```

Power analysis

Power analysis for chi-square goodness–of–fit

```r
###

library(pwr)

P0 = c(0.25, 0.50, 0.25)
P1 = c(0.225, 0.55, 0.225)

effect.size = ES.w1(P0, P1)

degrees = length(P0) - 1

pwr.chisq.test(
  w=effect.size,
  N=NULL, # Total number of observations
df=degrees,
  power=0.80, # 1 minus Type II probability
  sig.level=0.05) # Type I probability

N = 963.4689

#     #     #
```
G–test of Goodness-of-Fit

The G-test goodness-of-fit test can be performed with the \texttt{G.test} function in the package \texttt{RVAideMemoire}, the \texttt{GTest} function in \texttt{DescTools}. As another alternative, you can use R to calculate the statistic and p-value manually.

Examples in Summary and Analysis of Extension Program Evaluation

SAEPEER: Goodness-of-Fit Tests for Nominal Variables

Packages used in this chapter
The following commands will install these packages if they are not already installed:

```r
if(!require(DescTools)){install.packages("DescTools")}
if(!require(RVAideMemoire)){install.packages("RVAideMemoire")}
```

When to use it

Null hypothesis

How the test works

Post-hoc test

Assumptions

See the \textit{Handbook} for information on these topics.

Examples: extrinsic hypothesis

G-test goodness-of-fit test with DescTools and RVAideMemoire

```r
### Crossbill example, G-test goodness-of-fit, p. 55

observed = c(1752, 1895)  # observed frequencies
expected = c(0.5, 0.5)    # expected proportions

library(DescTools)
GTest(x=observed,
p=expected,
correct="none")  # "none" "williams" "yates"

Log likelihood ratio (G-test) goodness of fit test

\[ G = 5.6085, \ X^2 \text{-squared}\ df = 1, \ p\text{-value} = 0.01787 \]

library(RVAideMemoire)
G.test(x=observed,
p=expected)

G-test for given probabilities
```
$G = 5.6085, \text{df} = 1, p\text{-value} = 0.01787$

G-test goodness-of-fit test by manual calculation

```r
### Crossbill example, G-test goodness-of-fit, p. 55
### Manual calculation
###
observed = c(1752, 1895)  # observed frequencies
expected.prop = c(0.5, 0.5)  # expected proportions
degrees = 1  # degrees of freedom
expected.count = sum(observed)*expected.prop
G = 2 * sum(observed * log(observed / expected.count))

G

[1] 5.608512

pchisq(G, df=degrees, lower.tail=FALSE)

[1] 0.01787343
```

Examples of G-test goodness-of-fit test with DescTools and RVAideMemoire

```r
### Rice example, G-test goodness-of-fit, p. 55
###
observed = c(772, 1611, 737)
expected = c(0.25, 0.50, 0.25)
library(DescTools)
GTest(x=observed, p=expected, correct="none")

Log likelihood ratio (G-test) goodness of fit test

G = 4.1471, X-squared df = 2, p-value = 0.1257

library(RVAideMemoire)
```
G-test of Goodness-of-Fit

An R Companion for the Handbook of Biological Statistics

G.test(x=observed,
 p=expected)

G-test for given probabilities
G = 4.1471, df = 2, p-value = 0.1257

#

Foraging example, G-test goodness-of-fit, pp. 55–56
Foraging example, G-test goodness-of-fit, pp. 55–56

observed = c(70, 79, 3, 4)
expected = c(0.54, 0.40, 0.05, 0.01)

library(DescTools)
GTest(x=observed,
p=expected,
correct="none") # "none" "williams" "yates"

Log likelihood ratio (G-test) goodness of fit test
G = 13.145, X-squared df = 3, p-value = 0.004334

library(RVAideMemoire)
G.test(x=observed,
p=expected)

G-test for given probabilities
G = 13.1448, df = 3, p-value = 0.004334

#

Example: intrinsic hypothesis

Intrinsic example, G-test goodness-of-fit, amphipod, p. 56
Intrinsic example, G-test goodness-of-fit, amphipod, p. 56

observed = c(1203, 2919, 1678)
expected.prop = c(0.21073, 0.49665, 0.29262)

Note: These are recalculated for more precision
In this case, low precision probabilities
change the results

expected.count = sum(observed) * expected.prop
G = 2 * sum(observed * log(observed / expected.count))
Chi-square Test of Independence

The Chi-square test of independence can be performed with the `chisq.test` function in the native `stats` package in R. For this test, the function requires the contingency table to be in the form of matrix. Depending on the form of the data to begin with, this can require an extra step, either combing vectors into a matrix, or cross-tabulating the counts among factors in a data frame. None of this is too difficult, but it requires following the correct example depending on the initial form of the data.

When using `read.table` and `as.matrix` to read a table directly as a matrix, be careful of extra spaces at the end of lines or extraneous characters in the table, as these can cause errors.

Examples in **Summary and Analysis of Extension Program Evaluation**

SAEPEER: Association Tests for Nominal Variables

Packages used in this chapter

The following commands will install these packages if they are not already installed:
When to use it

Example of chi-square test with matrix created with read.table

Vaccination example, Chi-square independence, pp. 59–60
Example directly reading a table as a matrix
###--

```
Input =("Injection.area No.severe Severe
Thigh  4788    30
Arm    8916    76
")

Matriz = as.matrix(read.table(textConnection(Input),
header=TRUE,
row.names=1))

Matriz

     No.severe Severe
Thigh     4788     30
Arm       8916     76

chisq.test(Matriz,
correct=TRUE) # Continuity correction for 2 x 2
  #   table

Pearson's Chi-squared test with Yates' continuity correction

  x-squared = 1.7579, df = 1, p-value = 0.1849

chisq.test(Matriz,
correct=FALSE) # No continuity correction for 2 x 2
  #   table

Pearson's Chi-squared test
  x-squared = 2.0396, df = 1, p-value = 0.1533

#   #   #

Example of chi-square test with matrix created by combining vectors
R1 = c(4788, 30)
R2 = c(8916, 76)

rows  = 2

Matriz = matrix(c(R1, R2),
                nrow=rows,
                byrow=TRUE)

rownames(Matriz) = c("Thigh", "Arm")
colnames(Matriz) = c("No.severe", "Severe")

chisq.test(Matriz, correct=TRUE)  # Continuity correction for 2 x 2 table
  Pearson's Chi-squared test with Yates' continuity correction
  X-squared = 1.7579, df = 1, p-value = 0.1849

chisq.test(Matriz, correct=FALSE)  # No continuity correction for 2 x 2 table
  Pearson's Chi-squared test
  X-squared = 2.0396, df = 1, p-value = 0.1533

Null hypothesis
How the test works
See the Handbook for information on these topics.

Post-hoc tests
For the following example of post-hoc pairwise testing, we'll use the pairwiseNominalIndependence function from the package rcompanion to make the task easier. Then we'll use pairwise.table in the native stats package as an alternative.
### Post-hoc pairwise chi-square tests with rcompanion

```r
Input =("Supplement | No.cancer | Cancer
'Selenium' | 8177 | 575
'Vitamin E' | 8117 | 620
'Selenium+E' | 8147 | 555
'Placebo' | 8167 | 529
")

Matriz = as.matrix(read.table(textConnection(Input),
 header=TRUE, row.names=1))

Matriz

chisq.test(Matriz)

 X-squared = 7.7832, df = 3, p-value = 0.05071

library(rcompanion)

pairwiseNominalIndependence(Matriz,
 fisher = FALSE,
 gtest = FALSE,
 chisq = TRUE,
 method = "fdr")

 Comparison p.Chisq p.adj.Chisq
 1 Selenium : Vitamin E 0.17700 0.2960
 2 Selenium : Selenium+E 0.62800 0.6280
 3 Selenium : Placebo 0.19700 0.2960
 4 Vitamin E : Selenium+E 0.06260 0.1880
 5 Vitamin E : Placebo 0.00771 0.0463
 6 Selenium+E : Placebo 0.44000 0.5280
```

### Post-hoc pairwise chi-square tests with pairwise.table

```r
Input =("Supplement | No.cancer | Cancer
'Selenium' | 8177 | 575
'Vitamin E' | 8117 | 620
'Selenium+E' | 8147 | 555
")

```

---

### Post-hoc example, Chi-square independence, pp. 60–61

---

Post-hoc pairwise chi-square tests with rcompanion

---

Post-hoc pairwise chi-square tests with pairwise.table

---

---
```r
'Matriz' as.matrix(read.table(textConnection(Input),
 header=TRUE, row.names=1))
Matriz

chisq.test(Matriz)

X-squared = 7.7832, df = 3, p-value = 0.05071

FUN = function(i,j){
 chisq.test(matrix(c(Matriz[i,1], Matriz[i,2],
 Matriz[j,1], Matriz[j,2]),
 nrow=2, byrow=TRUE))$ p.value
}

pairwise.table(FUN,
 rownames(Matriz),
 p.adjust.method="none")

Can adjust p-values;
see ?p.adjust for options
```

### Assumptions
See the *Handbook* for information on this topic.

### Examples
**Chi-square test of independence with continuity correction and without correction**

```r
Helmet example, Chi-square independence, p. 63
```

```
Input =("PSE
PSE.Head.injury Other.injury
Helmet 372 4715
No.helmet 267 1391"

Matriz = as.matrix(read.table(textConnection(Input),
 header=TRUE,
 row.names=1))
```

39
Chi-square Test of Independence

An R Companion for the Handbook of Biological Statistics

row.names=1))

Matriz

chiq.test(Matriz, correct=TRUE)  # Continuity correction for 2 x 2 table
Pearson's Chi-squared test with Yates' continuity correction
X-squared = 111.6569, df = 1, p-value < 2.2e-16

chiq.test(Matriz, correct=FALSE)  # No continuity correction for 2 x 2 table
Pearson's Chi-squared test
X-squared = 112.6796, df = 1, p-value < 2.2e-16

### Gardemann apolipoprotein example, Chi-square independence, p. 63

Input =("Genotype No.disease Coronary.disease 'ins/ins' 268 807 'ins/del' 199 759 'del/del' 42 184")

Matriz = as.matrix(read.table(textConnection(Input), header=TRUE, row.names=1))

Matriz

chiq.test(Matriz)

Pearson's Chi-squared test
X-squared = 7.2594, df = 2, p-value = 0.02652

Graphing the results
The first plot below is a bar char with confidence intervals, with a style typical of the ggplot2 package. The second plot is somewhat more similar to the style of the plot in the Handbook.

40
For each example, the code calculates proportions or confidence intervals. This code could be skipped if those values were determined manually and put in to a data frame from which the plot could be generated.

Sometimes factors will need to have the order of their levels specified for `ggplot2` to put them in the correct order on the plot. Otherwise R will alphabetize levels.

**Simple bar plot with error bars showing confidence intervals**

```r
Plot example, herons and egrets, Chi-square test of association, pp. 63-64

Input =("Supplement No.cancer Cancer
'Selenium' 8177 575
'Vitamin E' 8117 620
'Selenium+E' 8147 555
'Placebo' 8167 529"
)
Prostate = read.table(textConnection(Input),header=TRUE)

Add sums and confidence intervals
library(dplyr)
Prostate = mutate(Prostate, Sum = No.cancer + Cancer)
Prostate = mutate(Prostate, Prop = Cancer / Sum,
low.ci = apply(Prostate[c("Cancer", "Sum")], 1, function(y) binom.test(y['Cancer'], y['Sum'])$ conf.int[1]),
high.ci = apply(Prostate[c("Cancer", "Sum")], 1, function(y) binom.test(y['Cancer'], y['Sum'])$ conf.int[2]))
Prostate

<table>
<thead>
<tr>
<th>Supplement</th>
<th>No.cancer</th>
<th>Cancer</th>
<th>Sum</th>
<th>Prop</th>
<th>low.ci</th>
<th>high.ci</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Selenium</td>
<td>8177</td>
<td>575</td>
<td>8752</td>
<td>0.0657</td>
<td>0.0606</td>
<td>0.0709</td>
</tr>
<tr>
<td>2 Vitamin E</td>
<td>8117</td>
<td>620</td>
<td>8737</td>
<td>0.071</td>
<td>0.0656</td>
<td>0.0765</td>
</tr>
<tr>
<td>3 Selenium+E</td>
<td>8147</td>
<td>555</td>
<td>8702</td>
<td>0.0638</td>
<td>0.0587</td>
<td>0.0691</td>
</tr>
<tr>
<td>4 Placebo</td>
<td>8167</td>
<td>529</td>
<td>8696</td>
<td>0.061</td>
<td>0.0559</td>
<td>0.0661</td>
</tr>
</tbody>
</table>

Plot (Bar chart plot)
library(ggplot2)
```
```r
ggplot(Prostate,
 aes(x=Supplement, y=Prop)) +
gem_bar(stat="identity", fill="gray40",
 colour="black", size=0.5,
 width=0.7) +
geom_errorbar(aes(ymax=high.ci, ymin=low.ci),
 width=0.2, size=0.5, color="black") +
xlab("Supplement") +
ylab("Prostate cancer proportion") +
scale_x_discrete(labels=c("Seleneum", "Vitamin E",
 "Selenium+E", "Placebo")) +
ggtitl
 "Main title"
 theme(axis.title=element_text(size=14, color="black",
 face="bold", vjust=3)) +
 theme(axis.text = element_text(size=12, color = "gray25",
 face="bold")) +
 theme(axis.title.y = element_text(vjust= 1.8)) +
 theme(axis.title.x = element_text(vjust= -0.5))
```

Bar plot of proportions vs. categories. Error bars indicate 95% confidence intervals for observed proportion.

**Bar plot with categories and no error bars**

### Plot example, herons and egrets, Chi-square independence, p. 64
Input =("Habitat  Bird  Count
Vegetation  Heron  15
Shoreline  Heron  20
Water  Heron  14
Structures  Heron  6
Vegetation  Egret  8
Shoreline  Egret  5
Water  Egret  7
Structures  Egret  1")

Birds = read.table(textConnection(Input),header=TRUE)

### Specify the order of factor levels

library(dplyr)

Birds =
mutate(Birds,
Habitat = factor(Habitat,levels=unique(Habitat)),
Bird = factor(Bird,levels=unique(Bird)))

### Add sums and proportions

Birds$ Sum[Birds$ Bird == 'Heron'] =
sum(Birds$ Count[Birds$ Bird == 'Heron'])

Birds$ Sum[Birds$ Bird == 'Egret'] =
sum(Birds$ Count[Birds$ Bird == 'Egret'])

Birds =
mutate(Birds,
prop = Count / Sum)

Birds

<table>
<thead>
<tr>
<th>Habitat</th>
<th>Bird</th>
<th>Count</th>
<th>Sum</th>
<th>prop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetation</td>
<td>Heron</td>
<td>15</td>
<td>55</td>
<td>0.27272727</td>
</tr>
<tr>
<td>Shoreline</td>
<td>Heron</td>
<td>20</td>
<td>55</td>
<td>0.36363636</td>
</tr>
<tr>
<td>Water</td>
<td>Heron</td>
<td>14</td>
<td>55</td>
<td>0.25454545</td>
</tr>
<tr>
<td>Structures</td>
<td>Heron</td>
<td>6</td>
<td>55</td>
<td>0.10909091</td>
</tr>
<tr>
<td>Vegetation</td>
<td>Egret</td>
<td>8</td>
<td>21</td>
<td>0.38095238</td>
</tr>
<tr>
<td>Shoreline</td>
<td>Egret</td>
<td>5</td>
<td>21</td>
<td>0.23809524</td>
</tr>
<tr>
<td>Water</td>
<td>Egret</td>
<td>7</td>
<td>21</td>
<td>0.33333333</td>
</tr>
<tr>
<td>Structures</td>
<td>Egret</td>
<td>1</td>
<td>21</td>
<td>0.04761905</td>
</tr>
</tbody>
</table>

### Plot adapted from:
### shinyapps.stat.ubc.ca/r-graph-catalog/

library(ggplot2)
library(grid)

ggplot(Birds,
    aes(x = Habitat, y = prop, fill = Bird, ymax=0.40, ymin=0)) +
  geom_bar(stat="identity", position = "dodge", width = 0.7) +
  geom_bar(stat="identity", position = "dodge", colour = "black",
           width = 0.7, show_guide = FALSE) +
  scale_y_continuous(breaks = seq(0, 0.40, 0.05),
                     limits = c(0, 0.40),
                     expand = c(0, 0)) +
  scale_fill_manual(name = "Bird type",
                    values = c('grey80', 'grey30'),
                    labels = c("Heron (all types)",
                               "Egret (all types)")) +
  ## geom_errorbar(position=position_dodge(width=0.7),
  ## width=0.0, size=0.5, color="black") +
  labs(x = "Habitat Location", y = "Landing site proportion") +
  ## ggtitle("Main title") +
  theme_bw() +
  theme(panel.grid.major.x = element_blank(),
        panel.grid.major.y = element_line(colour = "grey50"),
        plot.title = element_text(size = rel(1.5),
                                face = "bold", vjust = 1.5),
        axis.title = element_text(face = "bold"),
        legend.position = "top",
        legend.title = element_blank(),
        legend.key.size = unit(0.4, "cm"),
        legend.key = element_rect(fill = "black"),
        axis.title.y = element_text(vjust= 1.8),
        axis.title.x = element_text(vjust= -0.5))

#     #     #
Similar tests
Chi-square vs. G-test
See the Handbook for information on these topics. *Fisher's exact test, G-test, and McNemar's test* are discussed elsewhere in this book.

How to do the test
Chi-square test of independence with data as a data frame
In the following example for the chi-square test of independence, the data is read in as a data frame, not as a matrix as in previous examples. This allows more flexibility with how data are entered. For example you could have counts for same *genotype* and *health* distributed among several lines, or have a count of 1 for each row, with a separate row for each individual observation. The *xtabs* function is used to tabulate the data and convert them to a contingency table.

```r

Gardemann apolipoprotein example, Chi-square independence,
SAS example, pp. 65–66
Example using cross-tabulation

Input =("
Genotype Health Count
ins-ins no_disease 268
ins-ins disease 807
ins-del no_disease 199
```
ins-del disease 759
del-del no_disease 42
del-del disease 184
"

Data.frame = read.table(textConnection(Input),header=TRUE)

### Cross-tabulate the data

Data.xtabs = xtabs(Count ~ Genotype + Health,
                   data=Data.frame)

Data.xtabs

<table>
<thead>
<tr>
<th>Health</th>
<th>Genotype</th>
<th>disease</th>
<th>no_disease</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>del-del</td>
<td>184</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>ins-del</td>
<td>759</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>ins-ins</td>
<td>807</td>
<td>268</td>
</tr>
</tbody>
</table>

summary(Data.xtabs)  # includes N and factors

Number of cases in table: 2259
Number of factors: 2

### Chi-square test of independence

chisq.test(Data.xtabs)

  X-squared = 7.2594, df = 2, p-value = 0.02652

    #    #    #

Power analysis

Power analysis for chi-square test of independence

### -----------------------------------------------
### Power analysis, chi-square independence, pp. 66-67
### -----------------------------------------------

# This example assumes you are using a Chi-square test of
# independence. The example in the Handbook appears to use
# a Chi-square goodness-of-fit test

# In the pwr package, for the Chi-square test of independence,
# the table probabilities should sum to 1

Input =("Genotype  No.cancer Cancer
GG  0.18   0.165

46
G–test of Independence

There are a few different options for performing G-tests of independence in R. One is the `G.test` function in the package `RVAideMemoire`. Another is the `GTest` function in the package `DescTools`.

**Examples in Summary and Analysis of Extension Program Evaluation SAEEPER: Association Tests for Nominal Variables**

**Packages used in this chapter**
The following commands will install these packages if they are not already installed:
When to use it

*G-test example with functions in DescTools and RVAideMemoire*

### Vaccination example, G-test of independence, pp. 68–69

```r
Input =("Injection.area No.severe Severe
Thigh 4788 30
Arm 8916 76
")

Matriz = as.matrix(read.table(textConnection(Input),
header=TRUE,
row.names=1))

Matriz

library(DescTools)

GTest(Matriz,
correct="none") # "none" "williams" "yates"

Log likelihood ratio (G-test) test of independence without correction

G = 2.1087, X-squared df = 1, p-value = 0.1465

library(RVAideMemoire)

G.test(Matriz)

G = 2.1087, df = 1, p-value = 0.1465 # Note values differ from
the Handbook
for this example

#
```

Null hypothesis

How the test works

See the *Handbook* for information on these topics.

Post-hoc tests

For the following example of post-hoc pairwise testing, we'll use the `pairwise.G.test` function from the package `RVAideMemoire` to make the task easier. Then we'll use `pairwise.table` in the native `stats` package as an alternative.
Post-hoc pairwise G-tests with RVAideMemoire

### Post-hoc example, G-test of independence, pp. 69–70

```r
Input =("Supplement No.cancer Cancer
'Selenium' 8177 575
'Vitamin E' 8117 620
'Selenium+E' 8147 555
'Placebo' 8167 529 ")

Matriz = as.matrix(read.table(textConnection(Input),
 header=TRUE,
 row.names=1))

library(RVAideMemoire)
G.test(Matriz)
G = 7.7325, df = 3, p-value = 0.05188

library(RVAideMemoire)
pairwise.G.test(Matriz,
 p.method = "none")
Can adjust p-values;
see ?p.adjust for options
Selenium Vitamin E Selenium+E
Vitamin E 0.168 - -
Selenium+E 0.606 0.058 -
Placebo 0.187 0.007 0.422
```

Post-hoc pairwise G-tests with pairwise.table
As is, this function works on a matrix with two columns, and compares rows.

```r
Input =("Supplement No.cancer Cancer
'Selenium' 8177 575
'Vitamin E' 8117 620
'Selenium+E' 8147 555
'Placebo' 8167 529 ")
```
Matriz = as.matrix(read.table(textConnection(Input),
                     header=TRUE,
                     row.names=1))

Matriz

library(DescTools)

GTest(Matriz,
       correct="none")

Log likelihood ratio (G-test) test of independence without correction

G = 7.7325, X-squared df = 3, p-value = 0.05188

FUN = function(i,j){
  GTest(matrix(c(Matriz[i,1], Matriz[i,2],
                 Matriz[j,1], Matriz[j,2]),
        nrow=2,
        byrow=TRUE),
       correct="none")$ p.value  # "none" "williams" "yates"
}

pairwise.table(FUN,
               rownames(Matriz),
               p.adjust.method="none")  # Can adjust p-values
                # See ?p.adjust for options

<table>
<thead>
<tr>
<th></th>
<th>Selenium</th>
<th>Vitamin E</th>
<th>Selenium+E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin E</td>
<td>0.1677388</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Selenium+E</td>
<td>0.6060951</td>
<td>0.058385135</td>
<td>NA</td>
</tr>
<tr>
<td>Placebo</td>
<td>0.1866826</td>
<td>0.007004601</td>
<td>0.4215013</td>
</tr>
</tbody>
</table>

Assumptions
See the Handbook for information on this topic.

Examples

G-tests with DescTools and RVAideMemoire

### Helmet example, G-test of independence, p. 72

Input =("PSE       Head.injury Other.injury
Helemt 372 4715
No.helmet 267 1391")

Matriz = as.matrix(read.table(textConnection(Input),
                      header=TRUE,
                      row.names=1))
Matriz

library(DescTools)

GTest(Matriz, correct="none")  # "none" "williams" "yates"

Log likelihood ratio (G-test) test of independence without correction

G = 101.54, X-squared df = 1, p-value < 2.2e-16

library(RVAideMemoire)

G.test(Matriz)

G = 101.5437, df = 1, p-value < 2.2e-16

### Gardemann apolipoprotein example, G-test of independence,
P. 72

Input =(
Genotype  No.disease Coronary.disease
ins.ins   268        807
ins.del   199        759
del.del    42        184
)

Matriz = as.matrix(read.table(textConnection(Input),
header=TRUE,
row.names=1))

Matriz

library(DescTools)

GTest(Matriz, correct="none")  # "none" "williams" "yates"

Log likelihood ratio (G-test) test of independence without correction

G = 7.3008, X-squared df = 2, p-value = 0.02598

library(RVAideMemoire)

G.test(Matriz)
G-test of Independence

An R Companion for the Handbook of Biological Statistics

\[ G = 7.3008, \text{df} = 2, p\text{-value} = 0.02598 \]

# # #

Graphing the results
Graphing is discussed above in the “Chi-square Test of Independence” section.

Similar tests
Chi-square vs. G-test
See the Handbook for information on these topics. Fisher’s exact test, chi-square test, and McNemar’s test are discussed elsewhere in this book.

How to do the test
G-test of independence with data as a data frame
In the following example, the data is read in as a data frame, and the `xtabs` function is used to tabulate the data and convert them to a contingency table.

```r

Gardemann apolipoprotein example, G-test of independence,
SAS example, pp. 74–75
Example using cross-tabulation

Input = ("Genotype Health Count
ins-ins no_disease 268
ins-ins disease 807
ins-del no_disease 199
ins-del disease 759
del-del no_disease 42
del-del disease 184"
)

Data.frame = read.table(textConnection(Input),header=TRUE)

Cross-tabulate the data

Data.xtabs = xtabs(Count ~ Genotype + Health,
 data=Data.frame)

Data.xtabs

 Health
Genotype disease no_disease
del-del 184 42
ins-del 759 199
ins-ins 807 268
```

52
summary(Data.xtabs)  # includes N and factors

Number of cases in table: 2259
Number of factors: 2

### G-tests

library(DescTools)

GTest(Data.xtabs, correct="none")  # "none" "williams" "yates"

Log likelihood ratio (G-test) test of independence without correction

\( G = 7.3008, \chi^2 \text{-squared df} = 2, p\text{-value} = 0.02598 \)

library(RVAideMemoire)

G.test(Data.xtabs)

\( G = 7.3008, \text{df} = 2, p\text{-value} = 0.02598 \)

#     #     #

Power analysis
To calculate power or required samples, follow examples in the “Chi-square Test of Independence” section.

Fisher’s Exact Test of Independence

Examples in Summary and Analysis of Extension Program Evaluation
SAEPER: Association Tests for Nominal Variables

Packages used in this chapter
The following commands will install these packages if they are not already installed:

```
if(!require(rcompanion)){install.packages("rcompanion")}
```

When to use it
Null hypothesis
How the test works
See the Handbook for information on these topics.
Post-hoc tests
For the following example of post-hoc pairwise testing, we'll use the
`pairwiseNominalIndependence` function from the package `rcompanion` to make the task easier.

### Post-hoc pairwise Fisher's exact tests with RVAideMemoire

```r
Post-hoc example, Fisher's exact test, p. 79
Input =("Frequency Damaged Undamaged
Daily 1 24
Weekly 5 20
Monthly 14 11
Quarterly 11 14
")

Matriz = as.matrix(read.table(textConnection(Input),
header=TRUE,
row.names=1))

Matriz

fisher.test(Matriz,
alternative="two.sided")

p-value = 0.0001228
alternative hypothesis: two.sided

library(rcompanion)

PT = pairwiseNominalIndependence(Matriz,
 fisher = TRUE,
 gtest = FALSE,
 chisq = FALSE,
 digits = 3)

PT

1 Daily : Weekly 0.189000 0.227000
2 Daily : Monthly 0.000102 0.000612
3 Daily : Quarterly 0.001920 0.005760
4 Weekly : Monthly 0.018600 0.037200
5 Weekly : Quarterly 0.128000 0.192000
6 Monthly : Quarterly 0.572000 0.572000

library(rcompanion)
cldList(comparison = PT$Comparison,
```
FISHER’S EXACT TEST OF INDEPENDENCE

AN R COMPANION FOR THE HANDBOOK OF BIOLOGICAL STATISTICS

p.value = PT$p.adj.Fisher,
threshold = 0.05)

Group Letter MonoLetter
1    Daily   a    a
2   Weekly  ab   ab
3  Monthly  c    c
4 Quarterly bc  bc

Summary of results

Frequency Damaged Letter
Daily   4%    a
Weekly  20%   ab
Quarterly 44%  bc
Monthly  56%   c

Groups sharing a letter are not significantly different (alpha = 0.05)

#     #     #

Assumptions
See the Handbook for information on this topic.

Examples

Examples of Fisher’s exact test with data in a matrix

### Chipmunk example, Fisher’s exact test, p. 80

```
Input =("Distance Trill No.trill
10m 16 8
100m 3 18
")

Matriz = as.matrix(read.table(textConnection(Input),
header=TRUE,
row.names=1))

Matriz

fisher.test(Matriz,
alternative="two.sided")

p-value = 0.0006862

#
Drosophila example, Fisher's exact test, p. 81

```r
Input =("Variation Synonymous Replacement
'Polymorphisms' 43 2
'Fixed differences' 17 7
")

Matriz = as.matrix(read.table(textConnection(Input),
    header=TRUE,
    row.names=1))

Matriz

fisher.test(Matriz,
    alternative="two.sided")

p-value = 0.006653

# # #
```

King penguin example, Fisher's exact test, p. 81

```r
Input =("Site Alive Dead
Lower 43 7
Middle 44 6
Upper 49 1
")

Matriz = as.matrix(read.table(textConnection(Input),
    header=TRUE,
    row.names=1))

Matriz

fisher.test(Matriz,
    alternative="two.sided")

p-value = 0.08963
alternative hypothesis: two.sided

# # #
```

Moray eel example, Fisher's exact test, pp. 81–82

```r
```
Graphing the results
Graphing is discussed above in the “Chi-square Test of Independence” section.
Similar tests – McNemar’s test
Care is needed in setting up the data for McNemar’s test. For a before-and-after test, the contingency table is set up as before and after as row and column headings, or vice-versa. Note that the total observations in the contingency table is equal to the number of experimental units. That is, in the following example there are 62 men, and the sum of the counts in the contingency table is 62. If you set up the table incorrectly, you might end with double this number, and this will not yield the correct results.

McNemar’s test with data in a matrix

```r
Input =(" Row      After.no  After.yes
Before.no  46        10
Before.yes 0         6
")
Matriz = as.matrix(read.table(textConnection(Input),
                           header=TRUE,
                           row.names=1))
Matriz
mcnemar.test(Matriz, correct=FALSE)

McNemar's chi-squared = 10, df = 1, p-value = 0.001565
  #  #  #
```

McNemar’s test with data in a data frame

```r
Input =(" ED.before  ED.after  Count
no         no       46
no         yes      10
yes        no       0
yes        yes      6
")
Data = read.table(textConnection(Input),header=TRUE)
Data.xtabs = xtabs(Count ~ ED.before + ED.after, data=Data)
Data.xtabs
```
How to do the test

Fisher's exact test with data as a data frame

```r
### CHIPMUNK example, Fisher's exact test, SAS example, p. 83
### Example using cross-tabulation
###--------------------------------------------------------------

Input =("Distance   Sound   Count
 10m    trill   16
 10m  notrill    8
 100m  trill     3
 100m  notrill   18"
)

Data = read.table(textConnection(Input), header=TRUE)

Data.xtabs = xtabs(Count ~ Distance + Sound, data=Data)

Data.xtabs

<table>
<thead>
<tr>
<th>Distance</th>
<th>Sound</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>100m</td>
<td>notrill</td>
<td>18</td>
</tr>
<tr>
<td>10m</td>
<td>trill</td>
<td>16</td>
</tr>
</tbody>
</table>

summary(Data.xtabs)

### Fisher's exact test of independence

```
r
fisher.test(Data.xtabs, alternative="two.sided")

p-value = 0.0006862
```

```r
#
```

### BIRD example, Fisher’s exact test, SAS example, p. 84

---

# Table

<table>
<thead>
<tr>
<th>ED.after</th>
<th>ED.before</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>no</td>
<td>46</td>
</tr>
<tr>
<td>yes</td>
<td>0</td>
</tr>
</tbody>
</table>

```r
mcnemar.test(Data.xtabs, correct=FALSE)

McNemar's chi-squared = 10, df = 1, p-value = 0.001565

#
```
### Example using cross-tabulation

```r
Input =("Bird Substrate Count
eroen vegetation 15
eroen shoreline 20
eroen water 14
eroen structures 6
egret vegetation 8
egret shoreline 5
egret water 7
egret structures 1")

Data = read.table(textConnection(Input), header=TRUE)

Data.xtabs = xtabs(Count ~ Bird + Substrate, data=Data)

summary(Data.xtabs)

Fisher's exact test of independence

fisher.test(Data.xtabs,
 alternative="two.sided")

p-value = 0.5491
alternative hypothesis: two.sided

#

Power analysis

To calculate power or required samples, follow examples in the “Chi-square Test of Independence” section.

There, the result was

\[N = 1640.537 \quad \# \text{Total observations} \]

compared with the value in the Handbook of \(N_{\text{total}} = 1523 \) for this section.
Small Numbers in Chi-square and G–tests

The problem with small numbers
See the Handbook for information on these topics.

Yates’ and William’s corrections in R
The following table lists the continuity corrections available for the Chi-square tests and G-tests discussed in this book.

<table>
<thead>
<tr>
<th>Test</th>
<th>Function</th>
<th>Package</th>
<th>Correction</th>
<th>Option</th>
<th>Default</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-square</td>
<td>chisq.test</td>
<td>stats</td>
<td>Yates</td>
<td>correct=TRUE</td>
<td>TRUE</td>
<td>2 x 2 table only</td>
</tr>
<tr>
<td>G</td>
<td>G.test</td>
<td>RVAideMemoire</td>
<td>(none)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>GTest</td>
<td>DescTools</td>
<td>Yates</td>
<td>correct= "yates"</td>
<td>"none"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Williams</td>
<td>correct= "williams"</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pooling
Recommendation
See the Handbook for information on these topics.

Repeated G–tests of Goodness-of-Fit

These examples use the G.test function in the RVAideMemoire package, but the GTest function in the DescTools package could be used in the same manner.

Packages used in this chapter
The following commands will install these packages if they are not already installed:

```r
if(!require(dplyr)){install.packages("dplyr")}
if(!require(RVAideMemoire)){install.packages("RVAideMemoire")}
```

When to use it
Null hypothesis
See the Handbook for information on these topics.
How to do the test

Repeated G–tests of goodness-of-fit example

Arm crossing example, Repeated G–tests of goodness-of-fit,
pp. 91–93

Input = ("Ethnic.group R L
Yemen 168 174
Djerba 132 195
Kurdistan 167 204
Libya 162 212
Berber 143 194
Cochin 153 174 ")

Data = read.table(textConnection(Input), header=TRUE)

Individual G–tests

library(RVAideMemoire)

Fun.G = function (Q){
 G.test(x=c(Q["R"], Q["L"]),
 p=c(0.5, 0.5))$statistic
}

Fun.df = function (Q){
 G.test(x=c(Q["R"], Q["L"]),
 p=c(0.5, 0.5))$parameter
}

Fun.p = function (Q){
 G.test(x=c(Q["R"], Q["L"]),
 p=c(0.5, 0.5))$p.value
}

library(dplyr)

Data =
mutate(Data,
 Prop.R = R / (R + L),
 G = apply(Data["R", "L"], 1, Fun.G),
 df = apply(Data["R", "L"], 1, Fun.df),
 p.Value = apply(Data["R", "L"], 1, Fun.p))
RepeateD G–tests of Goodness-of-Fit

Data

<table>
<thead>
<tr>
<th>Ethnic.group</th>
<th>R</th>
<th>L</th>
<th>Prop.R</th>
<th>G</th>
<th>df</th>
<th>p.Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yemen</td>
<td>168</td>
<td>174</td>
<td>0.4912281</td>
<td>0.1052686</td>
<td>1</td>
<td>0.745596489</td>
</tr>
<tr>
<td>Djerba</td>
<td>132</td>
<td>195</td>
<td>0.4036697</td>
<td>12.2138397</td>
<td>1</td>
<td>0.000474363</td>
</tr>
<tr>
<td>Kurdistan</td>
<td>167</td>
<td>204</td>
<td>0.4501348</td>
<td>3.6961684</td>
<td>1</td>
<td>0.054537574</td>
</tr>
<tr>
<td>Libya</td>
<td>162</td>
<td>212</td>
<td>0.4331551</td>
<td>6.7045477</td>
<td>1</td>
<td>0.009617632</td>
</tr>
<tr>
<td>Berber</td>
<td>143</td>
<td>194</td>
<td>0.4243323</td>
<td>7.7478346</td>
<td>1</td>
<td>0.005377698</td>
</tr>
<tr>
<td>Cochin</td>
<td>153</td>
<td>174</td>
<td>0.4678899</td>
<td>1.3495524</td>
<td>1</td>
<td>0.245356383</td>
</tr>
</tbody>
</table>

Heterogeneity G-test

```r
Data.matrix = as.matrix(Data[,c("R", "L")])  # We need a data matrix
          # to run G-test
Data.matrix  # for heterogeneity
            #
          #
R   L
[1,] 168 174
[2,] 132 195
[3,] 167 204
[4,] 162 212
[5,] 143 194
[6,] 153 174

G.test(Data.matrix)  # Heterogeneity

G-test
G = 6.7504, df = 5, p-value = 0.2399

Pooled G-test

```r
Total.R = sum(Data$R) # Set up data for pooled
Total.L = sum(Data$L) # G-test
observed = c(Total.R, Total.L)
expected = c(0.5, 0.5)

G.test(x=observed, # G-test for given probabilities
 p=expected)

G = 25.0668, df = 1, p-value = 5.538e-07

Total G-test

```r
Total.G = sum(Data$G)  # Set up data for total
Total.df = sum(Data$df)  # G-test

Total.G  # Total
Repeated \( G \)-tests of Goodness-of-Fit

\[ 31.81721 \]

Total df

\[ 6 \]

\begin{verbatim}
pchisq(Total.G, 
   df= Total.df, 
   lower.tail=FALSE)
\end{verbatim}

\[ 1.768815e-05 \]

###

#### Example

**Repeated \( G \)-tests of goodness-of-fit example**

```r
Input =("
Trial D S
'Trial 1' 296 366
'Trial 2' 78 72
'Trial 3' 417 467
")

Data = read.table(textConnection(Input),header=TRUE)
```

**Individual \( G \)-tests**

```r
library(RVAideMemoire)

Fun.G = function (Q){
 G.test(x=c(Q['D'], Q['S'])),
 p=c(0.5, 0.5)
}$statistic
}

Fun.df = function (Q){
 G.test(x=c(Q['D'], Q['S'])),
 p=c(0.5, 0.5)
}$parameter
}

Fun.p = function (Q){
 G.test(x=c(Q['D'], Q['S'])),
 p=c(0.5, 0.5)
```

64
$p.value$

```r
library(dplyr)

Data =
mutate(Data,
 G = apply(Data[c("D", "S")], 1, Fun.G),
 df = apply(Data[c("D", "S")], 1, Fun.df),
 p.Value = apply(Data[c("D", "S")], 1, Fun.p))

Data

<table>
<thead>
<tr>
<th>Trial</th>
<th>D</th>
<th>S</th>
<th>G</th>
<th>df</th>
<th>p.Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>296</td>
<td>366</td>
<td>7.415668</td>
<td>1</td>
<td>0.00646583</td>
</tr>
<tr>
<td>2</td>
<td>78</td>
<td>72</td>
<td>0.240064</td>
<td>1</td>
<td>0.62415986</td>
</tr>
<tr>
<td>3</td>
<td>417</td>
<td>467</td>
<td>2.829564</td>
<td>1</td>
<td>0.09254347</td>
</tr>
</tbody>
</table>

Heterogeneity G-test

```r
Data.matrix = as.matrix(Data[c("D", "S")])
# We need a data matrix
data.matrix =
# to run G-test
# for heterogeneity

```r
Data.matrix

<table>
<thead>
<tr>
<th>D</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>296</td>
<td>366</td>
</tr>
<tr>
<td>78</td>
<td>72</td>
</tr>
<tr>
<td>417</td>
<td>467</td>
</tr>
</tbody>
</table>

G.test(Data.matrix)
Heterogeneity

G-test

G = 2.8168, df = 2, p-value = 0.2445

Pooled G-test

```r
Total.D = sum(Data$D)
# Set up data for pooled
Total.S = sum(Data$S)
# G-test

observed = c(Total.D, Total.S)
expected = c(0.5, 0.5)

G.test(x=observed,
    p=expected)
# Pooled

G-test for given probabilities
G = 7.6685, df = 1, p-value = 0.005619

Total G-test

65
Cochran–Mantel–Haenszel Test for Repeated Tests of Independence

The Cochran–Mantel–Haenszel test can be performed in R with the `mantelhaen.test` function in the native `stats` package. A few other useful functions come from the package `vcd`. One is `woolf_test`, which performs the Woolf test for homogeneity of the odds ratio across strata levels. This has a similar function to the Breslow-Day test mentioned in the Handbook. If this test is significant, the C-M-H test may not be appropriate. The Breslow-Day test itself can be performed with a function in the package `DescTools`. For cautions about using this test, see the documentation for this function, or other appropriate sources.

```r
library(DescTools); ?BreslowDayTest
```

There are a couple of different ways to generate the three-way contingency table. The table can be read in with the `read.ftable` function. Note that the columns are the stratum variable.

```r
Total.G = sum(Data$G) # Set up data for total G-test
degrees = 3
Total.G = sum(Data$G) # Set up data for total G-test
Total.df = sum(Data$df)

Total.G # Total
[1] 10.4853

Total.df
[1] 3

pchisq(Total.G,
 df=Total.df,
 lower.tail=FALSE)

[1] 0.01486097

#

Similar tests
See the Handbook for information on these topics.

Cochran–Mantel–Haenszel Test for Repeated Tests of Independence
Caution should be used with the formatting, since `read.ftable` can be fussy. I’ve noticed that it doesn’t like leading spaces in the rows. Certain editors, such as the one in R Studio, may add leading spaces when this code is pasted in. To alleviate this, delete those spaces manually, or paste the code into a plain text editor, save the file as a .R file, and then open that file with R Studio.

Another way to generate the contingency table is beginning with a data frame and tabulating the data using the `xtabs` function. The second example uses this method.

Examples in Summary and Analysis of Extension Program Evaluation

SAEPEER: Cochran–Mantel–Haenszel Test for 3-Dimensional Tables

Packages used in this chapter
The following commands will install these packages if they are not already installed:

```r
if(!require(dplyr)){install.packages("dplyr")}
if(!require(DescTools)){install.packages("DescTools")}
if(!require(ggplot2)){install.packages("ggplot2")}
if(!require(grid)){install.packages("grid")}
if(!require(vcd)){install.packages("vcd")}
```

When to use it

Null hypothesis

How the test works

Assumptions
See the [Handbook](#) for information on these topics.

Examples

Cochran–Mantel–Haenszel Test with data read by read.ftable

```r
### Handedness example, Cochran–Mantel–Haenszel test, p. 97–98
###    Example using read.ftable
###    # Note no spaces on lines before row names.
###    # read.ftable can be fussy about leading spaces.

Input =("W.Child B.adult PA.white W.men G.soldier

<table>
<thead>
<tr>
<th>Whorl</th>
<th>Handed</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clockwise</td>
<td>Right</td>
<td>708</td>
</tr>
<tr>
<td></td>
<td>Left</td>
<td>50</td>
</tr>
<tr>
<td>CounterCl</td>
<td>Right</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td>Left</td>
<td>13</td>
</tr>
</tbody>
</table>

Tabla = as.table(read.ftable(textConnection(Input)))
```

67
Cochran–Mantel–Haenszel test

mantelhaen.test(Tabla)

Mantel-Haenszel X-squared = 5.9421, df = 1, p-value = 0.01478

Woolf test

library(vcd)

oddsratio(Tabla, log=TRUE) # Show log odds for each 2x2

W.Child B.adult PA.white W.men G.soldier
0.08547173 0.08319894 -0.24921579 2.08581324 0.08680711

library(vcd)

woolf_test(Tabla) # Woolf test for homogeneity of odds ratios across strata.
If significant, C-M-H test is not appropriate

Woolf-test on Homogeneity of Odds Ratios (no 3-way assoc.)
X-squared = 22.8165, df = 4, p-value = 0.0001378

Breslow-Day test

library(DescTools)

BreslowDayTest(Tabla)

Breslow-Day Test for Homogeneity of the Odds Ratios
X-squared = 24.7309, df = 4, p-value = 5.698e-05

Individual Fisher exact tests

n = dim(Tabla)[3]

for(i in 1:n){
 Name = dimnames(Tabla)[3]$Group[i]
 P.value = fisher.test(Tabla[,,i])$p.value
 cat(Name, " \n")
Cochran–Mantel–Haenszel Test for Repeated Tests of An R Companion for the Handbook of Biological Statistics
Independence

```r
cat("Fisher test p-value: ", P.value, "\n")
cat("\n")
}

### Note: "Group" must be the name of the stratum variable

W.Child
Fisher test p-value: 0.7435918

B.adult
Fisher test p-value: 0.8545009

PA.white
Fisher test p-value: 0.7859788

W.men
Fisher test p-value: 6.225227e-08

G.soldier
Fisher test p-value: 0.7160507

#    #    #

Cochran–Mantel–Haenszel Test with data entered as a data frame

### -----------------------------------------------
### Mussel example, Cochran–Mantel–Haenszel test, pp. 98–99
### Example using cross-tabulation of a data frame
### -----------------------------------------------

Input =(" Location   Habitat   Allele   Count
Tillamook marine 94    56
Tillamook estuarine 94    69
Tillamook marine non-94 40
Tillamook estuarine non-94 77
Yaquina marine 94    61
Yaquina estuarine 94    257
Yaquina marine non-94 57
Yaquina estuarine non-94 301
Alsea marine 94    73
Alsea estuarine 94    65
Alsea marine non-94 71
Alsea estuarine non-94 79
Umpqua marine 94    71
Umpqua estuarine 94    48
Umpqua marine non-94 55
Umpqua estuarine non-94 48
")

Data = read.table(textConnection(Input),header=TRUE)
```
70

Specify the order of factor levels
Otherwise, R will alphabetize them

```r
library(dplyr)

Data =
mutate(Data,
    Location = factor(Location, levels=unique(Location)),
    Habitat = factor(Habitat, levels=unique(Habitat)),
    Allele = factor(Allele, levels=unique(Allele)))
```

Cross-tabulate the data
Note here, Location is stratum variable (is last)
Habitat x Allele are 2 x 2 tables

```r
Data.xtabs = xtabs(Count ~ Allele + Habitat + Location, data=Data)

ftable(Data.xtabs) # Display a flattened table
```

<table>
<thead>
<tr>
<th>Allele</th>
<th>Habitat</th>
<th>Location</th>
<th>Tillamook</th>
<th>Yaquina</th>
<th>Alsea</th>
<th>Umpqua</th>
</tr>
</thead>
<tbody>
<tr>
<td>94</td>
<td>marine</td>
<td></td>
<td>56</td>
<td>61</td>
<td>73</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>estuarine</td>
<td></td>
<td>69</td>
<td>257</td>
<td>65</td>
<td>48</td>
</tr>
<tr>
<td>non-94</td>
<td>marine</td>
<td></td>
<td>40</td>
<td>57</td>
<td>71</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>estuarine</td>
<td></td>
<td>77</td>
<td>301</td>
<td>79</td>
<td>48</td>
</tr>
</tbody>
</table>

Cochran-Mantel-Haenszel test

```r
mantelhaen.test(Data.xtabs)

Mantel-Haenszel X-squared = 5.0497, df = 1, p-value = 0.02463
```

Woolf test

```r
library(vcd)

oddsratio(Data.xtabs, log=TRUE) # Show log odds for each 2x2

Tillamook   Yaquina    Alsea    Umpqua
0.4461712   0.2258568 0.2228401 0.2553467
```

```r
library(vcd)

woolf_test(Data.xtabs) # woolf test for homogeneity of odds ratios across strata.
# If significant, C-M-H test # is not appropriate
```

70
woolf-test on Homogeneity of Odds Ratios (no 3-way assoc.)

x-squared = 0.5292, df = 3, p-value = 0.9124

Breslow-Day test

library(DescTools)
BreslowDayTest(Data.xtabs)

Breslow-Day Test for Homogeneity of the Odds Ratios

x-squared = 0.5295, df = 3, p-value = 0.9124

Individual Fisher exact tests

n = dim(Data.xtabs)[3]

for(i in 1:n){
 Name = dimnames(Data.xtabs)[3]$Location[i]
 P.value = fisher.test(Data.xtabs[,i])$p.value
 cat(Name, "\n")
 cat("Fisher test p-value: ", P.value, "\n")
 cat("\n")
}

Note: "Location" must be the name of the stratum variable

Tillamook
Fisher test p-value: 0.1145223

Yaquina
Fisher test p-value: 0.266571

Alsea
Fisher test p-value: 0.4090355

Umpqua
Fisher test p-value: 0.4151874

#

Cochran–Mantel–Haenszel Test with data read by read.ftable

Note no spaces on lines before row names.
Cochran–Mantel–Haenszel Test for Repeated Tests of AN R Companion for the Handbook of Biological Statistics
Independence

```r
# read.ftable can be fussy about leading spaces.
Input =(
"Study FATS AFREGS ARBITER.2 HATS CLAS.1
Supplement Revasc
Niacin  Yes  2  4  1  1  2
   No    46  67  86  37  92
Placebo Yes 11 12  4  6  1
   No    41  60  76  32  93"
)
Tabla = as.table(read.ftable(textConnection(Input)))
ftable(Tabla)  # Display a flattened table

Cochran–Mantel–Haenszel test
mantelhaen.test(Tabla)

    Mantel-Haenszel X-squared = 12.7457, df = 1, p-value = 0.0003568

Woolf test
library(vcd)
oddsratio(Tabla, log=TRUE)  # Show log odds for each 2x2

   FATS   AFREGS ARBITER.2   HATS   CLAS.1
1 -1.8198174 -1.2089603 -1.5099083 -1.9369415  0.7039581

library(vcd)
woolf_test(Tabla)  # Woolf test for homogeneity of odds ratios across strata.
# If significant, C-M-H test is not appropriate

    Woolf-test on Homogeneity of Odds Ratios (no 3-way assoc.)
    X-squared = 3.4512, df = 4, p-value = 0.4853

Breslow-Day test
library(DescTools)
BreslowDayTest(Tabla)

    Breslow-Day Test for Homogeneity of the Odds Ratios
    X-squared = 4.4517, df = 4, p-value = 0.3483
```

72
Individual Fisher exact tests

\[n = \text{dim}(\text{Tabla})[3] \]

\[
\text{for}(i \text{ in } 1:n)\{
\text{Name} = \text{dimnames}(\text{Tabla})[3]\$\text{Study}[i]
\text{P.value} = \text{fisher.test}(\text{Tabla}[,i])\$\text{p.value}
\text{cat}(\text{Name}, "\n")
\text{cat("Fisher test p-value: ", P.value, "\n")}
\text{cat("\n")}
\}

Note: "Study" must be the name of the stratum variable

FATS
Fisher test p-value: 0.01581505

AFREGS
Fisher test p-value: 0.0607213

ARBITER.2
Fisher test p-value: 0.1948915

HATS
Fisher test p-value: 0.1075169

CLAS.1
Fisher test p-value: 1

Graphing the results

Simple bar plot with categories and no error bars

\#

\#

\#

Input = ("
Habitat \hspace{0.5cm} Tillamook \hspace{0.5cm} Yaquina \hspace{0.5cm} Alsea \hspace{0.5cm} Umpqua
Marine \hspace{0.5cm} 0.5833 \hspace{0.5cm} 0.5169 \hspace{0.5cm} 0.5069 \hspace{0.5cm} 0.5635
Estuarine \hspace{0.5cm} 0.4726 \hspace{0.5cm} 0.4606 \hspace{0.5cm} 0.4514 \hspace{0.5cm} 0.5000
")

Matriz = as.matrix(read.table(textConnection(Input),
header=TRUE,
row.names=1))

Matriz
Bar plot with categories and error bars
This example includes code to calculate the confidence intervals for the error bars and add them to the data frame. This code could be excluded if these values were calculated manually and added to the data frame.

```r
Input =(" Location Habitat Allele Count Total   Lap.94.Proportion
Tillamook  Marine  94     56     96   0.5833
Tillamook  Estuarine 94    69    146   0.4726
Yaquina   Marine  94     61    118   0.5169
Yaquina   Estuarine 94   257    558   0.4606
Alsea     Marine  94     73    144   0.5069
Alsea     Estuarine 94   65    144   0.4514
Umpqua    Marine  94     71    126   0.5635
Umpqua    Estuarine 94   48     96   0.5000
")
```
Data = read.table(textConnection(Input), header=TRUE)

Specify the order of factor levels
Otherwise, R will alphabetize them

library(dplyr)

Data =
mutate(Data,
 Location = factor(Location, levels=unique(Location)),
 Habitat = factor(Habitat, levels=unique(Habitat)),
 Allele = factor(Allele, levels=unique(Data$ Allele)))

Add confidence intervals

Fun.low = function (x){
 binom.test(x["Count"], x["Total"],
 0.5)$ conf.int[1]
}

Fun.up = function (x){
 binom.test(x["Count"], x["Total"],
 0.5)$ conf.int[2]
}

Data =
mutate(Data,
 low.ci = apply(Data[c("Count", "Total")], 1, Fun.low),
 upper.ci = apply(Data[c("Count", "Total")], 1, Fun.up))

Data

<table>
<thead>
<tr>
<th>Location</th>
<th>Habitat</th>
<th>Allele</th>
<th>Count</th>
<th>Total</th>
<th>Lap.94.Proportion</th>
<th>low.ci</th>
<th>upper.ci</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tillamook</td>
<td>Marine</td>
<td>94</td>
<td>56</td>
<td>96</td>
<td>0.5833</td>
<td>0.4782322</td>
<td>0.6831506</td>
</tr>
<tr>
<td>Tillamook</td>
<td>Estuarine</td>
<td>94</td>
<td>69</td>
<td>146</td>
<td>0.4726</td>
<td>0.3894970</td>
<td>0.5568427</td>
</tr>
<tr>
<td>Yaquina</td>
<td>Marine</td>
<td>94</td>
<td>61</td>
<td>118</td>
<td>0.5169</td>
<td>0.4231343</td>
<td>0.6098931</td>
</tr>
<tr>
<td>Yaquina</td>
<td>Estuarine</td>
<td>94</td>
<td>257</td>
<td>558</td>
<td>0.4606</td>
<td>0.4186243</td>
<td>0.5029422</td>
</tr>
<tr>
<td>Alsea</td>
<td>Marine</td>
<td>94</td>
<td>73</td>
<td>144</td>
<td>0.5069</td>
<td>0.4224208</td>
<td>0.5911766</td>
</tr>
<tr>
<td>Alsea</td>
<td>Estuarine</td>
<td>94</td>
<td>65</td>
<td>144</td>
<td>0.4514</td>
<td>0.3684040</td>
<td>0.5364149</td>
</tr>
<tr>
<td>Umpqua</td>
<td>Marine</td>
<td>94</td>
<td>71</td>
<td>126</td>
<td>0.5635</td>
<td>0.4723096</td>
<td>0.6516209</td>
</tr>
<tr>
<td>Umpqua</td>
<td>Estuarine</td>
<td>94</td>
<td>48</td>
<td>96</td>
<td>0.5000</td>
<td>0.3961779</td>
<td>0.6038221</td>
</tr>
</tbody>
</table>

Plot adapted from:
shinyapps.stat.ubc.ca/r-graph-catalog/

library(ggplot2)
library(grid)

ggplot(Data,
aes(x = Location, y = Lap.94.Proportion, fill = Habitat,
 ymax=upper.ci, ymin=low.ci)) +
 geom_bar(stat="identity", position = "dodge", width = 0.7) +
```r
geom_bar(stat="identity", position = "dodge",
          colour = "black", width = 0.7,
          show_guide = FALSE) +
scale_y_continuous(breaks = seq(0, 0.80, 0.1),
                  limits = c(0, 0.80),
                  expand = c(0, 0)) +
scale_fill_manual(name = "Count type",
                  values = c('grey80', 'grey30'),
                  labels = c("Marine",
                           "Estuarine")) +
geom_errorbar(position=position_dodge(width=0.7),
               width=0.0, size=0.5, color="black") +
labs(x = "Location",
     y = "Lap94 proportion") +
## ggtitle("Main title") +
theme_bw() +
theme(panel.grid.major.x = element_blank(),
      panel.grid.major.y = element_line(colour = "grey50"),
      plot.title = element_text(size = rel(1.5),
                                 face = "bold", vjust = 1.5),
      axis.title = element_text(face = "bold"),
      legend.position = "top",
      legend.title = element_blank(),
      legend.key.size = unit(0.4, "cm"),
      legend.key = element_rect(fill = "black"),
      axis.title.y = element_text(vjust= 1.8),
      axis.title.x = element_text(vjust = -0.5))
```
Bar plot of proportions vs. categories. Error bars indicate 95% confidence intervals for proportion.

Similar tests
See the *Handbook* for information on this topic.

How to do the test
R code for the SAS example is shown in the “Examples” section above.
Descriptive Statistics

Statistics of Central Tendency

Most common statistics of central tendency can be calculated with functions in the native `stats` package. The `psych` and `DescTools` packages add functions for the geometric mean and the harmonic mean. The `describe` function in the `psych` package includes the mean, median, and trimmed mean along with other common statistics. In the native `stats` package, `summary` is a quick way to see the mean, median, and quantiles for numeric variables in a data frame. The mode is not commonly calculated, but can be found in `DescTools`.

Many functions which determine common statistics of central tendency or dispersion will return an `NA` if there are any missing values (NA's) in the analyzed data. In most cases this behavior can be changed with the `na.rm=TRUE` option, which will simply exclude any NA's in the data. The functions shown here either exclude NA's by default or use the `na.rm=TRUE` option.

Examples in Summary and Analysis of Extension Program Evaluation

SAEEPER: Descriptive Statistics

Packages used in this chapter
The following commands will install these packages if they are not already installed:

```r
if(!require(psych)){install.packages("psych")}
if(!require(DescTools)){install.packages("DescTools")}
```

Introduction

The normal distribution
See the *Handbook* for information on these topics.

Different measures of central tendency
Methods are described in the “Example” section below.

Example

```r
### Central tendency example, pp. 105–106
### ----------------------------------------------
Input =(
Stream Fish
Mill_Creek_1 76
Mill_Creek_2 102
North_Branch_Rock_Creek_1 12
North_Branch_Rock_Creek_2 39
Rock_Creek_1 55
Rock_Creek_2 93
Rock_Creek_3 98
Rock_Creek_4 53
```
Turkey_Branch

Data = read.table(textConnection(Input), header=TRUE)

Arithmetic mean

mean(Data$ Fish, na.rm=TRUE)

[1] 70

Geometric mean

library(psych)
geometric.mean(Data$ Fish)

[1] 59.83515

library(DescTools)
Gmean(Data$ Fish)

[1] 59.83515

Harmonic mean

library(psych)
harmonic.mean(Data$ Fish)

[1] 45.05709

library(DescTools)
Hmean(Data$ Fish)

[1] 45.05709

Median

median(Data$ Fish, na.rm=TRUE)

[1] 76

Mode

library(DescTools)
Mode(Data$ Fish)

[1] 102

Summary and describe functions for means, medians, and other statistics
The interquartile range (IQR) is 3rd Qu. minus 1st Qu.

```r
summary(Data$ Fish)  # Also works on whole data frames
# Will also report count of NA's

Min. 1st Qu. Median Mean 3rd Qu. Max.
12      53      76     70      98     10

library(psych)

describe(Data$ Fish,  # Also works on whole data frames
type=2)               # Type of skew and kurtosis

vars n mean    sd median trimmed  mad min max range  skew kurtosis   se
1   1 9   70 32.09     76      70 34.1  12 102    90 -0.65  -0.69 10.7

**Histogram**

```r
hist(Data$ Fish,
col="gray",
main="Maryland Biological Stream Survey",
xlab="Fish count")

```

Maryland Biological Stream Survey

![Histogram of fish count](image)

80
**DescTools to produce summary statistics and plots**

The `Desc` function in the package `DescTools` produces summary information for individual variables or whole data frames. It has custom output for factor, numeric, integer, and date variables.

```r
Central tendency example, pp. 105–106

Input =("Stream Fish
Mill_Creek_1 76
Mill_Creek_2 102
North_Branch_Rock_Creek_1 12
North_Branch_Rock_Creek_2 39
Rock_Creek_1 55
Rock_Creek_2 93
Rock_Creek_3 98
Rock_Creek_4 53
Turkey_Branch 102")

Data = read.table(textConnection(Input),header=TRUE)

Add a numeric variable with the same values as Fish

Data$Fish.num = as.numeric(Data$Fish)

Produce summary statistics and plots

library(DescTools)

Desc(Data, plotit=TRUE)
```

<table>
<thead>
<tr>
<th>Stream</th>
<th>freq</th>
<th>perc</th>
<th>cumfreq</th>
<th>cumperc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mill_Creek_1</td>
<td>1</td>
<td>.111</td>
<td>1</td>
<td>.111</td>
</tr>
<tr>
<td>Mill_Creek_2</td>
<td>1</td>
<td>.111</td>
<td>2</td>
<td>.222</td>
</tr>
<tr>
<td>North_Branch_Rock_Creek_1</td>
<td>1</td>
<td>.111</td>
<td>3</td>
<td>.333</td>
</tr>
<tr>
<td>North_Branch_Rock_Creek_2</td>
<td>1</td>
<td>.111</td>
<td>4</td>
<td>.444</td>
</tr>
<tr>
<td>Rock_Creek_1</td>
<td>1</td>
<td>.111</td>
<td>5</td>
<td>.556</td>
</tr>
<tr>
<td>Rock_Creek_2</td>
<td>1</td>
<td>.111</td>
<td>6</td>
<td>.667</td>
</tr>
<tr>
<td>Rock_Creek_3</td>
<td>1</td>
<td>.111</td>
<td>7</td>
<td>.778</td>
</tr>
<tr>
<td>Rock_Creek_4</td>
<td>1</td>
<td>.111</td>
<td>8</td>
<td>.889</td>
</tr>
<tr>
<td>Turkey_Branch</td>
<td>1</td>
<td>.111</td>
<td>9</td>
<td>1.000</td>
</tr>
</tbody>
</table>
```
3 - Fish.num (numeric)

<table>
<thead>
<tr>
<th>length</th>
<th>n</th>
<th>NA</th>
<th>unique</th>
<th>0</th>
<th>mean</th>
<th>meanSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>9</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>70</td>
<td>10.695</td>
</tr>
<tr>
<td></td>
<td>.05</td>
<td>.10</td>
<td>.25</td>
<td>.75</td>
<td>.90</td>
<td>.95</td>
</tr>
<tr>
<td>22.800</td>
<td>33.600</td>
<td>53</td>
<td>76</td>
<td>98</td>
<td>102</td>
<td>102</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>rng</th>
<th>sd</th>
<th>vcoef</th>
<th>mad</th>
<th>IQR</th>
<th>skew</th>
<th>kurt</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>32.086</td>
<td>0.458</td>
<td>34.100</td>
<td></td>
<td>-0.448</td>
<td>-1.389</td>
</tr>
</tbody>
</table>

lowest: 12, 39, 53, 55, 76
highest: 55, 76, 93, 98, 102 (2)

Shapiro-wilks normality test p.value : 0.23393
DescTools with grouped data

Summary statistics with grouped data, hypothetical data

```r
Input =("Stream        Animal  Count
Mill_Creek_1    Fish     76
Mill_Creek_2    Fish     102
North_Branch_Rock_Creek_1 Fish    12
North_Branch_Rock_Creek_2 Fish     39
Rock_Creek_1    Fish     55
Rock_Creek_2    Fish     93
Rock_Creek_3    Fish     98
Rock_Creek_4    Fish     53
Turkey_Branch  Fish    102

Mill_Creek_1    Insect   28
Mill_Creek_2    Insect    85
North_Branch_Rock_Creek_1 Insect  17
North_Branch_Rock_Creek_2 Insect   20
Rock_Creek_1    Insect    33
Rock_Creek_2    Insect    75
Rock_Creek_3    Insect    78
Rock_Creek_4    Insect    25
Turkey_Branch  Insect    87")

D2 = read.table(textConnection(Input),header=TRUE)

library(DescTools)

Desc(Count ~ Animal, D2,
```

83
digits=1, plotit=TRUE)

Count ~ Animal

Summary:
n pairs: 18, valid: 18 (100%), missings: 0 (0%), groups: 2

<table>
<thead>
<tr>
<th>Animal</th>
<th>Fish</th>
<th>Insect</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>70.0"</td>
<td>49.8'</td>
</tr>
<tr>
<td>median</td>
<td>76.0"</td>
<td>33.0'</td>
</tr>
<tr>
<td>sd</td>
<td>32.1</td>
<td>30.4</td>
</tr>
<tr>
<td>IQR</td>
<td>45.0</td>
<td>53.0</td>
</tr>
<tr>
<td>n</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>np</td>
<td>0.500</td>
<td>0.500</td>
</tr>
<tr>
<td>NAs</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Os</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Kruskal-Wallis rank sum test:
Kruskal-Wallis chi-squared = 2.125, df = 1, p-value = 0.1449

How to calculate the statistics
Methods are described in the “Example” section above.

Statistics of Dispersion

Measures of dispersion—such as range, variance, standard deviation, and coefficient of variation—can be calculated with standard functions in the native stats package. In addition, a function, here called summary.list, can be defined to output whichever statistics are of interest.
Introduction
See the Handbook for information on this topic.

Example
Statistics of dispersion example

```r
Input ="" Stream Fish
Mill_Creek_1 76
Mill_Creek_2 102
North_Branch_Rock_Creek_1 12
North_Branch_Rock_Creek_2 39
Rock_Creek_1 55
Rock_Creek_2 93
Rock_Creek_3 98
Rock_Creek_4 53
Turkey_Branch 102"

Data = read.table(textConnection(Input),header=TRUE)

Range

range(Data$ Fish, na.rm=TRUE)

[1] 12 102    # Min and max

max(Data$ Fish, na.rm=TRUE) - min(Data$ Fish, na.rm=TRUE)

[1] 90

Sum of squares
Not included here.

Parametric variance
Not included here.

Sample variance

var(Data$ Fish, na.rm=TRUE)

[1] 1029.5
```
Standard deviation

sd(Data$ Fish, na.rm=TRUE)

[1] 32.08582

Coefficient of variation, as percent

sd(Data$ Fish, na.rm=TRUE)/mean(Data$ Fish, na.rm=TRUE)*100

[1] 45.83689

Custom function of desired measures of central tendency and dispersion

```r
# Note NA's removed in the following function
summary.list = function(x) list(
  N.with.NA.removed= length(x[!is.na(x)]),
  Count.of.NA= length(x[is.na(x)]),
  Mean=mean(x, na.rm=TRUE),
  Median=median(x, na.rm=TRUE),
  Max.Min=range(x, na.rm=TRUE),
  Range=max(Data$ Fish, na.rm=TRUE) - min(Data$ Fish, na.rm=TRUE),
  Variance=var(x, na.rm=TRUE),
  Std.Dev=sd(x, na.rm=TRUE),
  Coeff.Variation.Prcnt=sd(x, na.rm=TRUE)/mean(x, na.rm=TRUE)*100,
  Std.Error=sd(x, na.rm=TRUE)/sqrt(length(x[!is.na(x)])),
  Quantile=quantile(x, na.rm=TRUE)
)

summary.list(Data$ Fish)
```

$N.with.NA.removed
[1] 9

$Count.of.NA
[1] 0

$Mean
[1] 70

$Median
[1] 76

$Range
[1] 12 102

$Variance
[1] 1029.5

$Std.Dev
How to calculate the statistics
Methods are described in the “Example” section above.

Standard Error of the Mean

The standard error of the mean can be calculated with standard functions in the native stats package. The describe function in the psych package includes the standard error of the mean along with other descriptive statistics. This function is useful to summarize multiple variables in a data frame.

Introduction
Similar statistics
See the Handbook for information on these topics.

Example
Standard error example

```r
Input =(" Stream Fish
Mill_Creek_1 76
Mill_Creek_2 102
North_Branch_Rock_Creek_1 12
North_Branch_Rock_Creek_2 39
Rock_Creek_1 55
Rock_Creek_2 93
Rock_Creek_3 98
Rock_Creek_4 53
Turkey_Branch 102
")
```
Data = read.table(textConnection(Input),header=TRUE)

Calculate standard error manually
sd(Data$ Fish, na.rm=TRUE) /
 sqrt(length(Data$Fish[!is.na(Data$ Fish)])) # Standard error

[1] 10.69527

Use describe function from psych package for standard error
Also works on whole data frames
library(psych)
describe(Data$ Fish,
 type=2) # Type of skew and kurtosis

Type of skew and kurtosis
vars n mean sd median trimmed mad min max range skew kurtosis se
1 1 9 70 32.09 76 70 34.1 12 102 90 -0.65 -0.69 10.7

#

How to calculate the standard error
Methods are described in the “Example” section above.

Confidence Limits

Introduction
See the Handbook for information on this topic.

Confidence limits for measurement variables
Methods are described in the “How to calculate confidence limits” section below.

Confidence limits for nominal variables
Examples are given in the “How to calculate confidence limits” section below.

Statistical testing with confidence intervals
Similar statistics
Examples
See the Handbook for information on these topics.
How to calculate confidence limits

The confidence limits about the mean—calculated using the t-value discussed in the Handbook—can be determined with a variety of functions. One is $t.test$ in the native stats package. Another is the CI function in the Rmisc package, which also has the function summarySE that presents the mean, standard deviation, standard error, and confidence interval for data designated as groups.

The bootstrap method noted in the Handbook can be achieved with the boot and boot.ci functions in the boot package.

Confidence intervals for mean with t.test, Rmisc, and DescTools

```r
### Confidence interval for measurement data, blacknose fish, p. 120
### -----------------------------------------------

Input =("Stream Fish
Mill_Creek_1 76
Mill_Creek_2 102
North_Branch_Rock_Creek_1 12
North_Branch_Rock_Creek_2 39
Rock_Creek_1 55
Rock_Creek_2 93
Rock_Creek_3 98
Rock_Creek_4 53
Turkey_Branch 102")

Data = read.table(textConnection(Input),header=TRUE)

### Use t.test to produce confidence interval
t.test(Data$ Fish,
      conf.level=0.95) # Confidence interval of the mean

   95 percent confidence interval:
   45.33665 94.66335

### Use CI in Rmisc package to produce confidence interval
library(Rmisc)
CI(Data$ Fish,
   ci=0.95) # Confidence interval of the mean

   upper  mean  lower
   94.66335 70.00000 45.33665

### Use MeanCI in DescTools package to produce confidence interval
```
library(DescTools)

MeanCI(Data$ Fish, conf.level=0.95) # Confidence interval of the mean

mean lwr.ci upr.ci
70.00000 45.33665 94.66335

#

Confidence intervals for means for grouped data

starts here
Confidence interval for grouped data, hypothetical data
ends here

Input =("Stream Animal Count
Mill_Creek_1 Fish 76
Mill_Creek_2 Fish 102
North_Branch_Rock_Creek_1 Fish 12
North_Branch_Rock_Creek_2 Fish 39
Rock_Creek_1 Fish 55
Rock_Creek_2 Fish 93
Rock_Creek_3 Fish 98
Rock_Creek_4 Fish 53
Turkey_Branch Fish 102
Mill_Creek_1 Insect 76
Mill_Creek_2 Insect 102
North_Branch_Rock_Creek_1 Insect 12
North_Branch_Rock_Creek_2 Insect 39
")

D2 = read.table(textConnection(Input),header=TRUE)

library(Rmisc)

summarySE(data=D2, # will produce confidence intervals
 measurevar="Count", # for groups defined by a variable
groupvars="Animal",
 conf.interval = 0.95)

Animal N Count sd se ci
1 Fish 9 70.00 32.08582 10.69527 24.66335
2 Insect 4 57.25 39.72719 19.86360 63.21483

#

Confidence intervals for mean by bootstrap
Confidence interval for measurement data, blacknose fish, p. 120

```
Input =("Stream Fish
Mill_Creek_1    76
Mill_Creek_2    102
North_Branch_Rock_Creek_1 12
North_Branch_Rock_Creek_2 39
Rock_Creek_1    55
Rock_Creek_2    93
Rock_Creek_3    98
Rock_Creek_4    53
Turkey_Branch  102")

Data = read.table(textConnection(Input),header=TRUE)

**Confidence intervals for mean by bootstrap with DescTools**

```
MeanCI(Data$Fish, method="boot", type="norm", R=10000)

 mean lwr.ci upr.ci
 70.00000 50.17986 89.84836

May be different for different iterations

MeanCI(Data$Fish, method="boot", type="basic", R=10000)

 mean lwr.ci upr.ci
 70.00000 51.44444 90.66667

May be different for different iterations
```

**Confidence intervals for mean by bootstrap with boot package**

```
library(boot)
Fun = function(x, index) {
 return(c(mean(x[index]),
 var(x[index]) / length(index)))
}

Boot = boot(data=Data$Fish,
 statistic=Fun,
 R=10000)

mean(Boot$t[,1])

[1] 70.01229

Mean by bootstrap
May be different for different iterations
```
```r
boot.ci(Boot,
 conf=0.95)
```

**Intervals:**

<table>
<thead>
<tr>
<th>Level</th>
<th>Normal</th>
<th>Basic</th>
<th>Studentized</th>
</tr>
</thead>
<tbody>
<tr>
<td>95%</td>
<td>(50.22, 89.76)</td>
<td>(51.11, 90.44)</td>
<td>(38.85, 91.72)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level</th>
<th>Percentile</th>
<th>BCa</th>
</tr>
</thead>
<tbody>
<tr>
<td>95%</td>
<td>(49.56, 88.89)</td>
<td>(47.44, 87.22)</td>
</tr>
</tbody>
</table>

Calculations and Intervals on Original Scale

# Note that the bootstrapped confidence limits vary from
# the calculated ones above because the original data set has
# few values and is not necessarily normally distributed.

```r
Confidence interval for proportions
The confidence interval for a proportion can be determined with the `binom.test` function, and
more options are available in the `BinomCI` function and `MultinomCI` function in the `DescTools`
package. More advanced techniques for confidence intervals on proportions and differences in
proportions can be found in the `PropCIs` package.

```r
### Confidence interval for nominal data, colorblind example, p. 118
### -----------------------------------------------
binom.test(2, 20, 0.5, 
    alternative="two.sided", 
    conf.level=0.95)
95 percent confidence interval: 
0.01234853 0.31698271

#     #     #
```

```r
### Confidence interval for nominal data, Gus data, p. 121
### -----------------------------------------------
Input =""
Paw 
right 
left 
right 
right 
right 
left 
right 
right

92
Gus = read.table(textConnection(Input),header=TRUE)
Successes = sum(Gus$ Paw == "left")  # Note the == operator
Failures = sum(Gus$ Paw == "right")
Total = Successes + Failures
Expected = 0.5
binom.test(Successes, Total, Expected,
            alternative="two.sided",
            conf.level=0.95)

95 percent confidence interval:
0.02521073 0.55609546
### Agrees with exact confidence interval from SAS
  #   #   #

Confidence interval for proportions using DescTools

Confidence interval for single proportion

### ----------------------------------------------------------
### Confidence intervals for nominal data, colorblind example, p. 118
### ----------------------------------------------------------

library(DescTools)
BinomCI(2, 20,
       conf.level = 0.95,
       method = "modified wilson")

### Other methods: "wilson", "wald", "agresti-coull", "jeffreys",
### "modified wilson", "modified jeffreys",
### "clopper-pearson", "arcsine", "logit", "witting"

  est   lwr.ci  upr.ci
[1,] 0.1 0.01776808 0.3010336
  #   #   #

Confidence interval for multinomial proportion

### ----------------------------------------------------------
### Confidence intervals for multinomial proportions, p. 33
### ----------------------------------------------------------

observed = c(35,74,22,69)
library(DescTools)

MultinomCI(observed, conf.level=0.95, method="goodman")

### Other methods: "sisonglaz", "cplus1"

<table>
<thead>
<tr>
<th>est</th>
<th>lwr.ci</th>
<th>upr.ci</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1,]</td>
<td>0.175</td>
<td>0.2619106</td>
</tr>
<tr>
<td>[2,]</td>
<td>0.370</td>
<td>0.4686407</td>
</tr>
<tr>
<td>[3,]</td>
<td>0.110</td>
<td>0.1870880</td>
</tr>
<tr>
<td>[4,]</td>
<td>0.345</td>
<td>0.4431954</td>
</tr>
</tbody>
</table>

# # #

Tests for One Measurement Variable

### Student's t-test for One Sample

**Introduction**

When to use it

Null hypothesis

How the test works

Assumptions

See the *Handbook* for information on these topics.

**Example**

*One sample t-test with observations as vector*

### One sample t-test, transferrin example, pp. 124

```r
observed = c(0.52, 0.20, 0.59, 0.62, 0.60)
theoretical = 0
t.test(observed,
 mu = theoretical,
 conf.int = 0.95)
```

*One Sample t-test*

* t = 6.4596, df = 4, p-value = 0.002958

# # #

**Graphing the results**

See the *Handbook* for information on this topic.

**Similar tests**
The *paired* *t-test* and *two-sample t-test* are presented elsewhere in this book.

**How to do the test**

*One sample t-test with observations in data frame*

```r
One-sample t-test, SAS example, pp. 125
###

Input =("Angle
120.6
116.4
117.2
118.1
116.9
114.1
113.3
121.1
116.9
117.0"
)

Data = read.table(textConnection(Input),header=TRUE)

observed = Data$ Angle
theoretical = 50

t.test(observed,
mu = theoretical,
conf.int=0.95)

One Sample t-test

t = 87.3166, df = 9, p-value = 1.718e-14

Does not agree with Handbook. The Handbook results are incorrect.
The SAS code produces the following result.

| Variable | DF | t Value | Pr > |t| |
|----------|----|---------|------|---|
| angle | 9 | 87.32 | <.0001 |

Histogram

```r
hist(Data$ Angle,
col="gray",
main="Histogram of values",
xlab="Angle")
```
Histogram of values

Histogram of data in a single population from a one-sample t-test. Distribution of these values should be approximately normal.

#

Power analysis
Power analysis for one-sample t-test

```r
### Power analysis, t-test, one-sample, hip joint example, pp. 125–126

M1 = 70 # Theoretical mean
M2 = 71 # Mean to detect
S1 = 2.4 # Standard deviation
S2 = 2.4 # Standard deviation

Cohen.d = (M1 - M2)/sqrt(((S1^2) + (S2^2))/2)

library(pwr)
pwr.t.test(
  n = NULL, # Observations
d = Cohen.d,
sig.level = 0.05, # Type I probability
power = 0.90, # 1 minus Type II probability
  type = "one.sample", # Change for one- or two-sample
  alternative = "two.sided")

One-sample t test power calculation

n = 62.47518
```

#
Student’s t-test for Two Samples

Introduction
When to use it
Null hypothesis
How the test works
Assumptions
See the Handbook for information on these topics.

Example
Two-sample t-test, independent (unpaired) observations

```r
Input = (Group Value
2pm    69
2pm    70
2pm    66
2pm    63
2pm    68
2pm    70
2pm    69
2pm    67
2pm    62
2pm    63
2pm    76
2pm    59
2pm    62
2pm    75
2pm    62
2pm    72
2pm    63
5pm    68
5pm    62
5pm    67
5pm    68
5pm    69
5pm    67
5pm    61
5pm    59
5pm    62
5pm    61
5pm    69
5pm    66
5pm    62
```
```r
5pm   62
5pm   61
5pm   70
"

Data = read.table(textConnection(Input),header=TRUE)
bartlett.test(Value ~ Group, data=Data)
### If p-value >= 0.05, use var.equal=TRUE below
Bartlett's K-squared = 1.2465, df = 1, p-value = 0.2642
t.test(Value ~ Group, data=Data, var.equal=TRUE, conf.level=0.95)
  Two Sample t-test
  t = 1.2888, df = 32, p-value = 0.2067
t.test(Value ~ Group, data=Data, var.equal=FALSE, conf.level=0.95)
  Welch Two Sample t-test
  t = 1.3109, df = 31.175, p-value = 0.1995

Plot of histograms

library(lattice)

histogram(~ Value | Group, data=Data, layout=c(1,2))        # columns and rows of individual plots
```
Histograms for each population in a two-sample t-test. For the t-test to be valid, the data in each population should be approximately normal. If the distributions are different, minimally Welch’s t-test should be used. If the data are not normal or the distributions are different, a non-parametric test like Mann-Whitney U-test or permutation test may be appropriate.

Box plots

```r
boxplot(value ~ group,
        data = data,
        names=c("2 pm","5 pm"),
        ylab="Value")
```

Box plots of two populations from a two-sample t-test.
Similar tests

Welch’s t-test is discussed below. The paired t-test and signed-rank test are discussed in this book in their own chapters. Analysis of variance (anova) is discussed in several subsequent chapters.

As non-parametric alternatives, the Mann–Whitney U-test and the permutation test for two independent samples are discussed in the chapter Mann–Whitney and Two-sample Permutation Test.

Welch’s t-test

Welch’s t-test is shown above in the “Example” section (“Two sample unpaired t-test”). It is invoked with the var.equal=FALSE option in the t.test function.

How to do the test

The SAS example from the Handbook is shown above in the “Example” section.

Power analysis

Power analysis for t-test

```r
### -------------------------------
### Power analysis, t-test, wide feet, p. 131
### -------------------------------

M1  = 100.6  # Mean for sample 1
M2  = 103.6  # Mean for sample 2
S1  =  5.26  # Std dev for sample 1
S2  =  5.26  # Std dev for sample 2

Cohen.d = (M1 - M2)/sqrt(((S1^2) + (S2^2))/2)

library(pwr)
pwr.t.test(
    n = NULL,  # Observations in _each_ group
d = Cohen.d,
sig.level = 0.05,  # Type I probability
power = 0.90,  # 1 minus Type II probability
type = "two.sample",  # Change for one- or two-sample
alternative = "two.sided")

Two-sample t test power calculation

    n = 65.57875  # Number for each group
```

#
Mann–Whitney and Two-sample Permutation Test

The Mann–Whitney U-test is a nonparametric test, also called the Mann–Whitney–Wilcoxon test. It tests for a difference in central tendency of two groups, or, with certain assumptions, for the difference in medians. It is conducted with the `wilcox.test` function in the native `stats` package. It can be used with continuous or ordinal measurements.

As another non-parametric alternative to t-tests, a permutation test can be used. An example is shown in the “Permutation test for independent samples” section of this chapter.

Mann–Whitney U-test

```r
### Mann–Whitney U-test, biological data analysis class, pp. 128-129
### ------------------------------------------------------------

Input ={
  Group Value
  2pm  69
  2pm  70
  2pm  66
  2pm  63
  2pm  68
  2pm  70
  2pm  69
  2pm  67
  2pm  62
  2pm  63
  2pm  76
  2pm  59
  2pm  62
  2pm  62
  2pm  75
  2pm  62
  2pm  72
  2pm  63
  5pm  68
  5pm  62
  5pm  67
  5pm  68
  5pm  69
  5pm  67
  5pm  61
  5pm  59
  5pm  62
  5pm  61
  5pm  69
  5pm  66
  5pm  62
```
Data = read.table(textConnection(Input),header=TRUE)

Box plots

boxplot(Value ~ Group,
 data = Data,
 names=c("2 pm","5 pm"),
 ylab="Value")

wilcox.test(Value ~ Group, data=Data)

wilcoxon rank sum test with continuity correction

w = 186, p-value = 0.1485

#

Permutation test for independent samples
Permutation tests are nonparametric tests, and can be performed with the coin package. The permutation test compares values across groups, and can also be used to compare ranks or counts. This test is analogous to a nonparametric t-test. Normality is not assumed but the test may require that distributions have similar variance or shape to be interpreted as a test of means.

Two-sample permutation test, biological data analysis class,
pp. 128–129
###
Chapters Not Covered in This Book

Introduction
Step-by-step analysis of biological data

```
2pm    66
2pm    63
2pm    68
2pm    70
2pm    69
2pm    67
2pm    62
2pm    63
2pm    76
2pm    59
2pm    62
2pm    62
2pm    75
2pm    62
2pm    72
2pm    63
2pm    66
2pm    68
2pm    62
2pm    68
2pm    67
2pm    69
2pm    67
2pm    61
2pm    59
2pm    62
2pm    61
2pm    69
2pm    66
2pm    62
2pm    62
2pm    61
2pm    69
5pm    68
5pm    62
5pm    67
5pm    68
5pm    69
5pm    67
5pm    67
5pm    61
5pm    59
5pm    62
5pm    61
5pm    69
5pm    66
5pm    62
5pm    62
5pm    61
5pm    61
5pm    70
"

Data = read.table(textConnection(Input),header=TRUE)

library(coin)

independence_test(Value ~ Group,
   data = Data)

   Asymptotic General Independence Test

   Z = 1.2761, p-value = 0.2019

   #     #     #

Chapters Not Covered in This Book

Introduction
Step-by-step analysis of biological data
Types of biological variables
Probability
Basic concepts of hypothesis testing
Confounding variables
Independence
Normality
Data transformations
See the Handbook for information on these topics.

Homoscedasticity and heteroscedasticity
Bartlett’s test is performed with the `bartlett.test` function. Levene’s test can be invoked with the `leveneTest` function in the `car` package. This test can also be used for a model with two independent variables. They are used in the chapter on One-way anova.

**Type I, II, and III Sums of Squares**

An in-depth discussion of Type I, II, and III sum of squares is beyond the scope of this book, but readers should at least be aware of them. They come into play in analysis of variance (anova) tables, when calculating sum of squares, F-values, and p-values.

Perhaps most salient point for beginners is that SAS tends to use Type III by default whereas R will use Type I with the `anova` function. In R, Type II and Type III tests are accessed through `Anova` in the `car` package, as well as through some other functions for other types of analyses. However, for Type III tests to be correct, the way R codes factors has to be changed from its default with the `options(contrasts = ...)` function. Changing this will not affect Type I or Type II tests.

```r
options(contrasts = c("contr.sum", "contr.poly"))
```

### needed for type III tests

```r
Default is: options(contrasts = c("contr.treatment", "contr.poly"))
```

Type I sum of squares are “sequential.” In essence the factors are tested in the order they are listed in the model. Type III are “partial.” In essence, every term in the model is tested in light of every other term in the model. That means that main effects are tested in light of interaction terms as well as in light of other main effects. Type II are similar to Type III, except that they preserve the principle of marginality. This means that main factors are tested in light of one another, but not in light of the interaction term.

When data are balanced and the design is simple, types I, II, and III will give the same results. But readers should be aware that results will differ for unbalanced data or more complex designs. The code below gives an example of this.
There are disagreements as to which type should be used routinely in analysis of variance. In reality, the user should understand what hypothesis she wants to test, and then choose the appropriate tests. As general advice, I would recommend not using Type I except in cases where you intend to have the effects assessed sequentially. Beyond that, probably a majority of those in the R community recommend Type II tests, while SAS users are more likely to consider Type III tests.

Some experimental designs will call for using a specified type of sum of squares, for example when you see “/ SS1” or “HTYPE=1” in SAS code.

A couple of online resources may provide some more clarity:


As a final note, readers should not confuse these sums of squares with “Type I error”, which refers to rejecting a null hypothesis when it is actually true (a false positive), and “Type II error”, which is failing to reject null hypothesis when it actually false (a false negative).

```r
options(contrasts = c("contr.sum", "contr.poly"))

needed for type III tests
A = c("a", "a", "a", "b", "b", "b", "b", "b", "b")
B = c("x", "y", "x", "y", "x", "y", "x", "x", "x")
C = c("l", "l", "m", "m", "l", "l", "m", "m", "l")
response = c(14, 30, 15, 35, 50, 51, 30, 32, 51, 55, 53, 55)
model = lm(response ~ A + B + C + A:B + A:C + B:C)
anova(model) # Type I tests

library(car)
Anova(model, type="II") # Type II tests
Anova(model, type="III") # Type III tests

#
```

Effects and p-values from a hypothetical linear model. While in this example the p-values are relatively similar, the B effect would not
One-way Anova

Examples in *Summary and Analysis of Extension Program Evaluation*

*S AAPER: Introduction to Parametric Tests*  
*S AAPER: One-way ANOVA*  
*S AAPER: What are Least Square Means?*

**Packages used in this chapter**

The following commands will install these packages if they are not already installed:

```r
if(!require(dplyr)) {install.packages("dplyr")}
if(!require(FSA)) {install.packages("FSA")}
if(!require(car)) {install.packages("car")}
if(!require(agricolae)) {install.packages("agricolae")}
if(!require(multcomp)) {install.packages("multcomp")}
if(!require(DescTools)) {install.packages("DescTools")}
if(!require(lsmeans)) {install.packages("lsmeans")}
if(!require(multcompView)) {install.packages("multcompView")}
if(!require(Rmisc)) {install.packages("Rmisc")}
if(!require(ggplot2)) {install.packages("ggplot2")}
if(!require(pwr)) {install.packages("pwr")}
```

**When to use it**

Analysis for this example is described below in the “How to do the test” section below.

**Null hypothesis**

**How the test works**

**Assumptions**

**Additional analyses**

See the *Handbook* for information on these topics.

*Tukey-Kramer test*

---

<table>
<thead>
<tr>
<th>Effect</th>
<th>Type I ( p )-value</th>
<th>Type II ( p )-value</th>
<th>Type III ( p )-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>&lt; 0.0001</td>
<td>&lt; 0.0001</td>
<td>&lt; 0.0001</td>
</tr>
<tr>
<td>B</td>
<td>0.09</td>
<td>0.002</td>
<td>0.001</td>
</tr>
<tr>
<td>C</td>
<td>0.0002</td>
<td>0.0004</td>
<td>0.001</td>
</tr>
<tr>
<td>A:B</td>
<td>0.0004</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>A:C</td>
<td>0.0003</td>
<td>0.0003</td>
<td>0.0003</td>
</tr>
<tr>
<td>B:C</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>

be significant with Type I sum of squares at the \( \alpha = 0.05 \) level, while it would be with Type II or Type III tests.
The Tukey mean separation tests and others are shown below in the “How to do the test” section.

**Partitioning variance**
This topic is not covered here.

**Example**
Code for this example is not included here. An example is covered below in the “How to do the test” section.

**Graphing the results**
Graphing of the results is shown below in the “How to do the test” section.

**Similar tests**
*Two-sample t-test, Two-way anova, Nested anova, Welch’s anova, and Kruskal–Wallis* are presented elsewhere in this book.

A permutation test, presented in the *One-way Analysis with Permutation Test* chapter, can also be employed as a nonparametric alternative.

**How to do the test**
The *lm* function in the native stats package fits a linear model by least squares, and can be used for a variety of analyses such as regression, analysis of variance, and analysis of covariance. The analysis of variance is then conducted either with the *Anova* function in the car package for Type II or Type III sum of squares, or with the *anova* function in the native stats package for Type I sum of squares.

If the analysis of variance indicates a significant effect of the independent variable, multiple comparisons among the levels of this factor can be conducted using Tukey or Least Significant Difference (LSD) procedures. The problem of inflating the Type I Error Rate when making multiple comparisons is discussed in the *Multiple Comparisons* chapter in the *Handbook*. R functions which make multiple comparisons usually allow for adjusting p-values. In R, the “BH”, or “fdr”, procedure is the Benjamini–Hochberg procedure discussed in the *Handbook*. See *?p.adjust* for more information.

**One-way anova example**

```r
One-way anova, SAS example, pp. 155-156

Input =C" Location Aam
Tillamook 0.0571
Tillamook 0.0813
Tillamook 0.0831
Tillamook 0.0976
Tillamook 0.0817
Tillamook 0.0859
Tillamook 0.0735
```
Data = read.table(textConnection(Input),header=TRUE)

Specify the order of factor levels for plots and Dunnett comparison

library(dplyr)

Data =
mutate(Data,
   Location = factor(Location, levels=unique(Location)))

Produce summary statistics

library(FSA)

Summarize(Aam ~ Location,
data=Data,
digits=3)

<table>
<thead>
<tr>
<th>Location</th>
<th>n</th>
<th>mean</th>
<th>sd</th>
<th>min</th>
<th>Q1</th>
<th>median</th>
<th>Q3</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tillamook</td>
<td>10</td>
<td>0.080</td>
<td>0.012</td>
<td>0.057</td>
<td>0.075</td>
<td>0.082</td>
<td>0.085</td>
<td>0.098</td>
</tr>
<tr>
<td>Newport</td>
<td>8</td>
<td>0.075</td>
<td>0.009</td>
<td>0.065</td>
<td>0.067</td>
<td>0.074</td>
<td>0.082</td>
<td>0.087</td>
</tr>
<tr>
<td>Petersburg</td>
<td>7</td>
<td>0.103</td>
<td>0.016</td>
<td>0.082</td>
<td>0.097</td>
<td>0.102</td>
<td>0.106</td>
<td>0.135</td>
</tr>
<tr>
<td>Magadan</td>
<td>8</td>
<td>0.078</td>
<td>0.013</td>
<td>0.068</td>
<td>0.069</td>
<td>0.073</td>
<td>0.081</td>
<td>0.103</td>
</tr>
<tr>
<td>Tvarminne</td>
<td>6</td>
<td>0.096</td>
<td>0.013</td>
<td>0.070</td>
<td>0.096</td>
<td>0.100</td>
<td>0.104</td>
<td>0.104</td>
</tr>
</tbody>
</table>
Fit the linear model and conduct ANOVA

```r
model = lm(Aam ~ Location,
data = Data)

library(car)

Anova(model, type="II") # Can use type="III"

If you use type="III", you need the following line before the analysis
options(contrasts = c("contr.sum", "contr.poly"))

<table>
<thead>
<tr>
<th>Sum Sq</th>
<th>Df</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>4</td>
<td>7.121</td>
<td>0.0002812 ***</td>
</tr>
<tr>
<td>Residuals</td>
<td>34</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

anova(model) # Produces type I sum of squares

<table>
<thead>
<tr>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>4</td>
<td>0.0045197</td>
<td>0.00112992</td>
<td>7.121</td>
</tr>
<tr>
<td>Residuals</td>
<td>34</td>
<td>0.0053949</td>
<td>0.00015867</td>
<td></td>
</tr>
</tbody>
</table>

summary(model) # Produces r-square, overall p-value, parameter estimates

Multiple R-squared: 0.4559, Adjusted R-squared: 0.3918
F-statistic: 7.121 on 4 and 34 DF, p-value: 0.0002812

Checking assumptions of the model

hist(residuals(model),
col="darkgray")

Histogram of residuals(model)
A histogram of residuals from a linear model. The distribution of these residuals should be approximately normal.

```r
plot(fitted(model),
      residuals(model))
```

A plot of residuals vs. predicted values. The residuals should be unbiased and homoscedastic. For an illustration of these properties, see this diagram by Steve Jost at DePaul University: condor.depaul.edu/sjost/it223/documents/resid-plots.gif.

```r
### additional model checking plots with: plot(model)
### alternative: library(FSA); residPlot(model)
```

Tukey and Least Significant Difference mean separation tests (pairwise comparisons)

Tukey and other multiple comparison tests can be performed with a handful of functions. The functions `TukeyHSD`, `HSD.test`, and `LSD.test` are probably not appropriate for cases where there are unbalanced data or unequal variances among levels of the factor, though `TukeyHSD` does make an adjustment for mildly unbalanced data. It is my understanding that the `multcomp` and `lsmeans` packages are more appropriate for unbalanced data. Another alternative is the `DTK` package that performs mean separation tests on data with unequal sample sizes and no assumption of equal variances.

Tukey comparisons in agricolae package

```r
library(agricolae)

(HSD.test(model, "Location")) # outer parentheses print result
```

```
trt   means  M
1 Petersburg 0.1034429 a
2 Tvarminne  0.0957000 ab
3 Tillamook  0.0802000 bc
```
4 Magadan 0.0780125 bc
5 Newport 0.0748000 c

Means sharing the same letter are not significantly different

LSD comparisons in *agricolae* **package**

```r
library(agricolae)

(LSD.test(model, "Location", 
  alpha = 0.05,
  p.adj="none"))  # see ?p.adjust for options
```

<table>
<thead>
<tr>
<th>trt</th>
<th>means M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Petersburg</td>
<td>0.1034429 a</td>
</tr>
<tr>
<td>2 Tvarminne</td>
<td>0.0957000 a</td>
</tr>
<tr>
<td>3 Tillamook</td>
<td>0.0802000 b</td>
</tr>
<tr>
<td>4 Magadan</td>
<td>0.0780125 b</td>
</tr>
<tr>
<td>5 Newport</td>
<td>0.0748000 b</td>
</tr>
</tbody>
</table>

Means sharing the same letter are not significantly different

Multiple comparisons in *multcomp* **package**

Note that “Tukey” here does not mean Tukey-adjusted comparisons. It just sets up a matrix to compare each mean to each other mean.

```r
library(multcomp)

mc = glht(model, 
  mcp(Location = "Tukey"))

mcs = summary(mc, test=adjusted("single-step"))

mcs
```


Linear Hypotheses:

| Linear Hypotheses | Estimate | Std. Error | t value | Pr(>|t|) |
|-------------------|----------|------------|---------|---------|
| Newport - Tillamook == 0 | -0.005400 | 0.005975 | -0.904 | 0.89303 |
| Petersburg - Tillamook == 0 | 0.023243 | 0.006208 | 3.744 | 0.00555 ** |
| Magadan - Tillamook == 0 | -0.002188 | 0.005975 | -0.366 | 0.99596 |
| Tvarminne - Tillamook == 0 | 0.015500 | 0.006505 | 2.383 | 0.09254 . |
| Petersburg - Newport == 0 | 0.028643 | 0.006519 | 4.394 | < 0.001 *** |
| Magadan - Newport == 0 | 0.003213 | 0.006298 | 0.510 | 0.99596 |
| Tvarminne - Newport == 0 | 0.020900 | 0.006803 | 3.072 | 0.03153 * |
| Magadan - Petersburg == 0 | -0.025430 | 0.006519 | -3.901 | 0.00376 ** |
| Tvarminne - Petersburg == 0 | -0.007743 | 0.007008 | -1.105 | 0.80211 |
| Tvarminne - Magadan == 0 | 0.017688 | 0.006803 | 2.600 | 0.09254 . |
cld(mcs,
level=0.05,
decreasing=TRUE)

Tillamook Newport Petersburg Magadan Tvarminne
"bc" "c" "a" "bc" "ab"

Means sharing a letter are not significantly different

Multiple comparisons to a control in multcomp package

Control is the first level of the factor
library(multcomp)
mc = glht(model,
mcp(Location = "Dunnett"))
summary(mc, test=adjusted("single-step"))

Adjustment options: "none", "single-step", "Shaffer",
"Westfall", "free", "holm", "hochberg",
"hommel", "bonferroni", "BH", "BY", "fdr"

Linear Hypotheses: Estimate Std. Error t value Pr(>|t|)
Newport - Tillamook == 0 -0.005400 0.005975 -0.904 0.79587
Petersburg - Tillamook == 0 0.023243 0.006208 3.744 0.00252 **
Magadan - Tillamook == 0 -0.002188 0.005975 -0.366 0.98989
Tvarminne - Tillamook == 0 0.015500 0.006505 2.383 0.07794 .

Multiple comparisons to a control with Dunnett Test

The control group can be specified with the control option,
or will be the first level of the factor
library(DescTools)

DunnettTest(Aam ~ Location,
data = Data)

Dunnett's test for comparing several treatments with a control :
95% family-wise confidence level

<table>
<thead>
<tr>
<th>diff</th>
<th>lwr.ci</th>
<th>upr.ci</th>
<th>pval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newport-Tillamook</td>
<td>-0.00540000</td>
<td>-0.020830113</td>
<td>0.01003011</td>
</tr>
<tr>
<td>Petersburg-Tillamook</td>
<td>0.02324286</td>
<td>0.00721227</td>
<td>0.03927359</td>
</tr>
<tr>
<td>Magadan-Tillamook</td>
<td>-0.00218750</td>
<td>-0.017617613</td>
<td>0.01324261</td>
</tr>
<tr>
<td>Tvarminne-Tillamook</td>
<td>0.01550000</td>
<td>0.001298180</td>
<td>0.03229818</td>
</tr>
</tbody>
</table>
Multiple comparisons with least square means
Least square means can be calculated for each group. Here a Tukey adjustment is applied for multiple comparisons among group least square means. The multiple comparisons can be displayed as a compact letter display.

```r
library(lsmeans)
library(multcompView)

leastsquare = lsmeans(model,
                        pairwise ~ Location,
                        adjust = "tukey")

$contrasts
contrast           estimate        SE   df  t.ratio  p.value
Tillamook - Newport   0.005400 0.005975080 34  0.904  0.8935
Tillamook - Petersburg -0.023243 0.006207660 34 -3.744  0.0057
Tillamook - Magadan   0.002188 0.005975080 34  0.366  0.9960
Tillamook - Tvarminne -0.015500 0.006207660 34 -2.383  0.1447
Newport - Petersburg  -0.028643 0.006519347 34 -4.394  0.0009
Newport - Magadan    -0.003213 0.006298288 34 -0.510  0.9858
Newport - Tvarminne  -0.020900 0.006519347 34 -3.072  0.0317
Petersburg - Magadan  0.025430 0.006519347 34  3.901  0.0037
Petersburg - Tvarminne  0.007743 0.007008087 34  1.105  0.8028
Magadan - Tvarminne  -0.017688 0.006802928 34 -2.600  0.0929

P value adjustment: tukey method for comparing a family of 5 estimates

cld(leastsquare,  
    alpha = 0.05,  
    Letters = letters,  
    adjust="tukey")

Location    lsmean       SE   df lower.CL upper.CL .group
Newport    0.0748000 0.004453562 34 0.06268565 0.08691435  a
Magadan    0.0780125 0.004453562 34 0.06589815 0.09012685 ab
Tillamook  0.0802000 0.003983387 34 0.06936459 0.09103541 ab
Tvarminne  0.0957000 0.007008087 34 0.08171155 0.10968845 bc
Petersburg 0.1034429 0.004761058 34 0.09049207 0.11639365 c

Confidence level used: 0.95
Conf-level adjustment: sidak method for 5 estimates
P value adjustment: tukey method for comparing a family of 5 estimates
significance level used: alpha = 0.05

Graphing the results

Simple box plots of values across groups

boxplot(Aam ~ Location,  
        data = Data,

113
Box plots of values for each level of the independent variable for a one-way analysis of variance (ANOVA).

Simple bar plot of means across groups

```r
Summarize the data frame (Data) into a table
library(Rmisc)
Data2 = summarySE(data=Data,
 "Aam",
 groupvars="Location",
 conf.interval = 0.95)
Tabla = as.table(Data2$Aam)
ownames(Tabla) = Data2$Location
Tabla
```

<table>
<thead>
<tr>
<th></th>
<th>Tillamook</th>
<th>Newport</th>
<th>Petersburg</th>
<th>Magadan</th>
<th>Tvarminne</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0802000</td>
<td>0.0748000</td>
<td>0.1034429</td>
<td>0.0780125</td>
<td>0.0957000</td>
</tr>
</tbody>
</table>
A bar plot of means for each level of the independent variable for a one-way analysis of variance (ANOVA).

Bar plot of means with error bars across groups

```r
library(ggplot2)
 offset.v = -3 # offsets for mean letters
 offset.h = 0.5

ggplot(Data2,
 aes(x = Location, y = Aam,
 ymax=0.12, ymin=0.0)) +
 geom_bar(stat="identity", fill="gray50",
 colour = "black", width = 0.7) +
 geom_errorbar(aes(ymax=Aam+se, ymin=Aam-se),
 width=0.0, size=0.5, color="black") +
 geom_text(aes(label=c("bc","c","a","bc","ab"),
 hjust=offset.h, vjust=offset.v)) +
 labs(x = "Sample location",
 y = "aam / height") +
 theme_bw() +
 theme(panel.grid.major.x = element_blank(),
 panel.grid.major.y = element_line(colour = "grey80"),
 plot.title = element_text(size = rel(1.5),
 face = "bold", vjust = 1.5),
 axis.title = element_text(face = "bold"),
 axis.title.y = element_text(vjust= 1.8),
 axis.title.x = element_text(vjust= -0.5),
```
Bar plot of means for each level of the independent variable of a one-way analysis of variance (ANOVA). Error indicates standard error of the mean. Bars sharing the same letter are not significantly different according to Tukey’s HSD test.

**Welch’s anova**

Bartlett’s test and Levene’s test can be used to check the homoscedasticity of groups from a one-way anova. A significant result for these tests ($p < 0.05$) suggests that groups are heteroscedastic. One approach with heteroscedastic data in a one way anova is to use the Welch correction with the `oneway.test` function in the native `stats` package. A more versatile approach is to use the `white.adjust=TRUE` option in the `Anova` function from the `car` package.

```r
Bartlett test for homogeneity of variance
bartlett.test(Aam ~ Location,
data = Data)
```

**Bartlett test of homogeneity of variances**

* Bartlett's K-squared = 2.4341, df = 4, p-value = 0.6565
### Levene test for homogeneity of variance

```r
library(car)
leveneTest(Aam ~ Location,
data = Data)
```

**Levene's Test for Homogeneity of Variance (center = median)**

```
Df F value Pr(>F)
group 4 0.12 0.9744
 34
```

### Welch's anova for unequal variances

```r
oneway.test(Aam ~ Location,
data=Data,
var.equal=FALSE)
```

**One-way analysis of means (not assuming equal variances)**

```
F = 5.6645, num df = 4.000, denom df = 15.695, p-value = 0.00508
```

### White-adjusted anova for heteroscedasticity

```r
model = lm(Aam ~ Location,
data=Data)
library(car)
Anova(model, Type="II",
white.adjust=TRUE)
```

```
Df F Pr(>F)
Location 4 5.4617 0.001659 **
Residuals 34
```

# # #

**Power analysis**

*Power analysis for one-way anova*

```r
library(pwr)
groups = 5
means = c(10, 10, 15, 15, 15)
sd = 12
```
grand.mean = mean(means)
Cohen.f = sqrt(sum((1/groups) * (means-grand.mean)^2) ) /sd

pwr.anova.test(k = groups, 
               n = NULL, 
               f = Cohen.f, 
               sig.level = 0.05, 
               power = 0.80)

Balanced one-way analysis of variance power calculation

n = 58.24599

NOTE: n is number in each group

#    #    #

Kruskal–Wallis Test

Examples in Summary and Analysis of Extension Program Evaluation

SAEPER: Kruskal–Wallis Test

Packages used in this chapter
The following commands will install these packages if they are not already installed:

if(!require(dplyr)){install.packages("dplyr")}
if(!require(FSA)){install.packages("FSA")}
if(!require(DescTools)){install.packages("DescTools")}
if(!require(rcompanion)){install.packages("rcompanion")}
if(!require(multcompView)){install.packages("multcompView")}

When to use it
See the Handbook for information on this topic.

Null hypothesis
This example shows just summary statistics, histograms by group, and the Kruskal–Wallis test. An example with plots, post-hoc tests, and alternative tests is shown in the “Example” section below.

Kruskal–Wallis test example

### Kruskal–Wallis test, hypothetical example, p. 159

Input =
Group     Value

<table>
<thead>
<tr>
<th>Group.1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group.1</td>
<td>2</td>
</tr>
<tr>
<td>Group.1</td>
<td>3</td>
</tr>
<tr>
<td>Group.1</td>
<td>4</td>
</tr>
<tr>
<td>Group.1</td>
<td>5</td>
</tr>
<tr>
<td>Group.1</td>
<td>6</td>
</tr>
<tr>
<td>Group.1</td>
<td>7</td>
</tr>
<tr>
<td>Group.1</td>
<td>8</td>
</tr>
<tr>
<td>Group.1</td>
<td>9</td>
</tr>
<tr>
<td>Group.1</td>
<td>46</td>
</tr>
<tr>
<td>Group.1</td>
<td>47</td>
</tr>
<tr>
<td>Group.1</td>
<td>48</td>
</tr>
<tr>
<td>Group.1</td>
<td>49</td>
</tr>
<tr>
<td>Group.1</td>
<td>50</td>
</tr>
<tr>
<td>Group.1</td>
<td>51</td>
</tr>
<tr>
<td>Group.1</td>
<td>52</td>
</tr>
<tr>
<td>Group.1</td>
<td>53</td>
</tr>
<tr>
<td>Group.1</td>
<td>342</td>
</tr>
<tr>
<td>Group.2</td>
<td>10</td>
</tr>
<tr>
<td>Group.2</td>
<td>11</td>
</tr>
<tr>
<td>Group.2</td>
<td>12</td>
</tr>
<tr>
<td>Group.2</td>
<td>13</td>
</tr>
<tr>
<td>Group.2</td>
<td>14</td>
</tr>
<tr>
<td>Group.2</td>
<td>15</td>
</tr>
<tr>
<td>Group.2</td>
<td>16</td>
</tr>
<tr>
<td>Group.2</td>
<td>17</td>
</tr>
<tr>
<td>Group.2</td>
<td>18</td>
</tr>
<tr>
<td>Group.2</td>
<td>37</td>
</tr>
<tr>
<td>Group.2</td>
<td>58</td>
</tr>
<tr>
<td>Group.2</td>
<td>59</td>
</tr>
<tr>
<td>Group.2</td>
<td>60</td>
</tr>
<tr>
<td>Group.2</td>
<td>61</td>
</tr>
<tr>
<td>Group.2</td>
<td>62</td>
</tr>
<tr>
<td>Group.2</td>
<td>63</td>
</tr>
<tr>
<td>Group.2</td>
<td>64</td>
</tr>
<tr>
<td>Group.2</td>
<td>193</td>
</tr>
<tr>
<td>Group.3</td>
<td>19</td>
</tr>
<tr>
<td>Group.3</td>
<td>20</td>
</tr>
<tr>
<td>Group.3</td>
<td>21</td>
</tr>
<tr>
<td>Group.3</td>
<td>22</td>
</tr>
<tr>
<td>Group.3</td>
<td>23</td>
</tr>
<tr>
<td>Group.3</td>
<td>24</td>
</tr>
<tr>
<td>Group.3</td>
<td>25</td>
</tr>
<tr>
<td>Group.3</td>
<td>26</td>
</tr>
<tr>
<td>Group.3</td>
<td>27</td>
</tr>
<tr>
<td>Group.3</td>
<td>28</td>
</tr>
<tr>
<td>Group.3</td>
<td>65</td>
</tr>
<tr>
<td>Group.3</td>
<td>66</td>
</tr>
<tr>
<td>Group.3</td>
<td>67</td>
</tr>
<tr>
<td>Group.3</td>
<td>68</td>
</tr>
<tr>
<td>Group.3</td>
<td>69</td>
</tr>
<tr>
<td>Group.3</td>
<td>70</td>
</tr>
<tr>
<td>Group.3</td>
<td>71</td>
</tr>
<tr>
<td>Group.3</td>
<td>72</td>
</tr>
</tbody>
</table>

"
Data = read.table(textConnection(Input),header=TRUE)

### Specify the order of factor levels

library(dplyr)

Data =
  mutate(Data,
    Group = factor(Group, levels=unique(Group)))

Medians and descriptive statistics

As noted in the *Handbook*, each group has identical medians and means.

library(FSA)

Summarize(Value ~ Group,
  data = Data)

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>mean</th>
<th>sd</th>
<th>min</th>
<th>Q1</th>
<th>median</th>
<th>Q3</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group.1</td>
<td>18</td>
<td>43.5</td>
<td>77.775</td>
<td>1</td>
<td>5.25</td>
<td>27.5</td>
<td>49.75</td>
<td>342</td>
</tr>
<tr>
<td>Group.2</td>
<td>18</td>
<td>43.5</td>
<td>43.694</td>
<td>10</td>
<td>14.25</td>
<td>27.5</td>
<td>60.75</td>
<td>193</td>
</tr>
<tr>
<td>Group.3</td>
<td>18</td>
<td>43.5</td>
<td>23.167</td>
<td>19</td>
<td>23.25</td>
<td>27.5</td>
<td>67.75</td>
<td>72</td>
</tr>
</tbody>
</table>

Histograms for each group

library(lattice)

histogram(~ Value | Group,
  data=Data,
  layout=c(1,3))  # columns and rows of individual plots
Kruskal–Wallis test
In this case, there is a significant difference in the distributions of values among groups, as is evident both from the histograms and from the significant Kruskal–Wallis test. Only in cases where the distributions in each group are similar can a significant Kruskal–Wallis test be interpreted as a difference in medians.

```
kruskal.test(Value ~ Group,
 data = Data)

Kruskal-Wallis chi-squared = 7.3553, df = 2, p-value = 0.02528
```

#     #     #

How the test works
Assumptions
See the Handbook for information on these topics.

Example
The Kruskal–Wallis test is performed on a data frame with the kruskal.test function in the native stats package. Shown first is a complete example with plots, post-hoc tests, and alternative methods, for the example used in R help. It is data measuring if the mucociliary efficiency in the rate of dust removal is different among normal subjects, subjects with obstructive airway
disease, and subjects with asbestosis. For the original citation, use the `?kruskal.test` command. For both the submissive dog example and the oyster DNA example from the *Handbook*, a Kruskal–Wallis test is shown later in this chapter.

**Kruskal–Wallis test example**

```R
--
Kruskal–Wallis test, asbestosis example from R help for
kruskal.test
--

Input =("Obs Health Efficiency
1 Normal 2.9
2 Normal 3.0
3 Normal 2.5
4 Normal 2.6
5 Normal 3.2
6 OAD 3.8
7 OAD 2.7
8 OAD 4.0
9 OAD 2.4
10 Asbestosis 2.8
11 Asbestosis 3.4
12 Asbestosis 3.7
13 Asbestosis 2.2
14 Asbestosis 2.0")

Data = read.table(textConnection(Input),header=TRUE)

Specify the order of factor levels

library(dplyr)

Data =
mutate(Data,
 Health = factor(Health, levels=unique(Health)))

Medians and descriptive statistics

library(FSA)

Summarize(Efficiency ~ Health,
 data = Data)

 Health n mean sd min Q1 median Q3 max
1 Normal 5 2.840 0.2880972 2.5 2.600 2.90 3.00 3.2
2 OAD 4 3.225 0.7932003 2.4 2.625 3.25 3.85 4.0
3 Asbestosis 5 2.820 0.7362065 2.0 2.200 2.80 3.40 3.7
```
**Graphing the results**

**Stacked histograms of values across groups**

```r
library(lattice)

histogram(~ Efficiency | Health,
data = Data,
layout = c(1,3)) # columns and rows of individual plots
```

Stacked histograms for each group in a Kruskal–Wallis test. If the distributions are similar, then the Kruskal–Wallis test will test for a difference in medians.

**Simple box plots of values across groups**

```r
boxplot(Efficiency ~ Health,
data = Data,
ylab = "Efficiency",
xlab = "Health")
```
Kruskal–Wallis test

kruskal.test(Efficiency ~ Health,
data = Data)

Kruskal-wallis chi-squared = 0.7714, df = 2, p-value = 0.68

Dunn test for multiple comparisons
If the Kruskal–Wallis test is significant, a post-hoc analysis can be performed to determine which levels of the independent variable differ from each other level. Probably the most popular test for this is the Dunn test, which is performed with the dunnTest function in the FSA package. Adjustments to the p-values could be made using the method option to control the familywise error rate or to control the false discovery rate. See ?p.adjust for details.

Zar (2010) states that the Dunn test is appropriate for groups with unequal numbers of observations.

If there are several values to compare, it can be beneficial to have R convert this table to a compact letter display for you. The cldList function in the rcompanion package can do this.

### Order groups by median

Data$Health = factor(Data$Health,
levels=c("OAD", "Normal", "Asbestosis"))

### Dunn test

library(FSA)

PT = dunnTest(Efficiency ~ Health,
data=Data,
method="bh")  # Can adjust p-values;
               # See ?p.adjust for options

PT
Dunn (1964) Kruskal-Wallis multiple comparison
   p-values adjusted with the False Discovery Rate method.

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Z</th>
<th>P.unadj</th>
<th>P.adj</th>
</tr>
</thead>
<tbody>
<tr>
<td>OAD - Normal</td>
<td>0.6414270</td>
<td>0.5212453</td>
<td>0.7818680</td>
</tr>
<tr>
<td>OAD - Asbestosis</td>
<td>0.8552360</td>
<td>0.3924205</td>
<td>1.0000000</td>
</tr>
<tr>
<td>Normal - Asbestosis</td>
<td>0.2267787</td>
<td>0.8205958</td>
<td>0.8205958</td>
</tr>
</tbody>
</table>

PT = PT$res

library(rcompanion)
cldList(comparison = PT$Comparison,
p.value = PT$P.adj,
threshold = 0.05)

Error: No significant differences.

Nemenyi test for multiple comparisons
Zar (2010) suggests that the Nemenyi test is not appropriate for groups with unequal numbers of observations.

library(DescTools)

PT = NemenyiTest(x = Data$Efficiency,
g = Data$Health,
dist="tukey")

PT

Nemenyi's test of multiple comparisons for independent samples (tukey)

<table>
<thead>
<tr>
<th>mean.rank.diff</th>
<th>pval</th>
</tr>
</thead>
<tbody>
<tr>
<td>OAD-Normal</td>
<td>1.8</td>
</tr>
<tr>
<td>Asbestosis-Normal</td>
<td>-0.6</td>
</tr>
<tr>
<td>Asbestosis-OAD</td>
<td>-2.4</td>
</tr>
</tbody>
</table>

library(rcompanion)
cldList(comparison = PT$Comparison,
p.value = PT$P.adj,
threshold = 0.05)

Error: No significant differences.
**Pairwise Mann–Whitney U-tests**

Another post-hoc approach is to use pairwise Mann–Whitney U-tests. To prevent the inflation of type I error rates, adjustments to the p-values can be made using the `p.adjust.method` option to control the familywise error rate or to control the false discovery rate. See `?p.adjust` for details.

If there are several values to compare, it can be beneficial to have R convert this table to a compact letter display for you. The `multcompLetters` function in the `multcompView` package can do this, but first the table of p-values must be converted to a full table.

```r
PT = pairwise.wilcox.test(Data$Efficiency, Data$Health, p.adjust.method="none")
Can adjust p-values;
See ?p.adjust for options
PT

library(rcompanion)
PT1 = fullPTable(PT)
PT1

library(multcompView)
multcompLetters(PT1, compare="<", threshold=0.05, Letters=letters, reversed = FALSE)

Normal OAD Asbestosis
"a" "a" "a"

Values sharing the same letter are not significantly different
Kruskal–Wallis test example

Input =("Dog Sex Rank
Merlino Male 1
Gastone Male 2
Pippo Male 3
Leon Male 4
Golia Male 5
Lancillotto Male 6
Mamy Female 7
Nanà Female 8
Isotta Female 9
Diana Female 10
Simba Male 11
Pongo Male 12
Semola Male 13
Kimba Male 14
Morgana Female 15
Stella Female 16
Hansel Male 17
Cucciola Male 18
Mammolo Male 19
Dotto Male 20
Gongolo Male 21
Gretel Female 22
Brontolo Female 23
Eolo Female 24
Mag Female 25
Emy Female 26
Pisola Female 27")

Data = read.table(textConnection(Input),header=TRUE)

kruskal.test(Rank ~ Sex,
 data = Data)

 Kruskal-Wallis chi-squared = 4.6095, df = 1, p-value = 0.03179

#

Graphing the results
Graphing of the results is shown above in the “Example” section.

Similar tests
One-way anova is presented elsewhere in this book.

How to do the test
Kruskal–Wallis test example

```r
Input =("Markername  Markertype  fst
CVB1        DNA     -0.005
CVB2m       DNA     0.116
CVJ5        DNA     -0.006
CVJ6        DNA     0.095
CVL1        DNA     0.053
CVL3        DNA     0.003
6Pgd        protein-0.005
Aat-2       protein0.016
Acp-3       protein0.041
Adk-1       protein0.016
Ap-1        protein0.066
Est-1       protein0.163
Est-3       protein0.004
Lap-1       protein0.049
Lap-2       protein0.006
Mpi-2       protein0.058
Pgi         protein-0.002
Pgm-1       protein0.015
Pgm-2       protein0.044
Sdh         protein0.024
")

Data = read.table(textConnection(Input),header=TRUE)

kruskal.test(fst ~ Markertype, 
 data = Data)

Kruskal-Wallis chi-squared = 0.0426, df = 1, p-value = 0.8365

#     #     #

Power Analysis
See the Handbook for information on this topic.

References
### One-way Analysis with Permutation Test

Permutation tests are non-parametric tests that do not assume normally-distributed errors. However, these tests may assume that distributions have similar variance or shape to be interpreted as a test of means.

A one-way anova using permutation tests can be performed with the `coin` package. A post-hoc analysis can be conducted with pairwise permutation tests analogous to pairwise t-tests. This can be accomplished with the functions `pairwisePermutationTest` and `pairwisePermutationMatrix` in the `rcompanion` package, which rely on the `independence_test` function in the `coin` package.

For more information on permutation tests available in the `coin` package, see:

```r
help(package="coin")
```

Consult the chapters on *One-way Anova* and *Kruskal–Wallis Test* for general consideration about conducting analysis of variance.

### Examples in Summary and Analysis of Extension Program Evaluation

#### SAEPER: Permutation Test of Independence

#### Packages used in this chapter

The following commands will install these packages if they are not already installed:

```r
if(!require(coin)){install.packages("coin")}
if(!require(FSA)){install.packages("FSA")}
if(!require(rcompanion)){install.packages("rcompanion")}
if(!require(multcompView)){install.packages("multcompView")}
```

#### Permutation test for one-way analysis

```r
One-way permutation test, hypothetical data

Input =""
Factor Response
 A 4.6
 A 5.5
 A 3.4
 A 5.0
 A 3.9
 A 4.5
 B 3.6
 B 4.5
 B 2.4
 B 4.0
 B 2.9
 B 3.5
```

129
```r
Data = read.table(textConnection(Input),header=TRUE)

Data$Factor = factor(Data$Factor,
 ordered=FALSE,
 levels=unique(Data$Factor))

Order factors, otherwise R will alphabetize them

boxplot(Response ~ Factor,
 data = Data,
 ylab = "Response",
 xlab = "Factor")

Permutation test

library(coin)

independence_test(Response ~ Factor,
 data = Data)

Asymptotic General Independence Test

maxT = 3.2251, p-value = 0.005183
```
**Pairwise permutation tests**

Pairwise permutation tests could be used as a post-hoc test for a significant permutation test. If no p-value adjustment is made, then the type I error rate may be inflated due to multiple comparisons. Here, the “fdr” p-value adjustment method is used to control the false discovery rate.

### Table output with `pairwisePermutationTest`

```r
Order groups by median

Data$Factor = factor(Data$Factor,
 levels = c("D", "A", "B", "C"))

library(FSA)
headtail(Data)

Pairwise tests

library(rcompanion)

PT = pairwisePermutationTest(Response ~ Factor,
 data = Data,
 method="fdr")

PT

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Stat</th>
<th>p.value</th>
<th>p.adjust</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 D - A = 0</td>
<td>-0.2409</td>
<td>0.8096</td>
<td>0.80960</td>
</tr>
<tr>
<td>2 D - B = 0</td>
<td>-2.074</td>
<td>0.03812</td>
<td>0.06106</td>
</tr>
<tr>
<td>3 D - C = 0</td>
<td>-2.776</td>
<td>0.005505</td>
<td>0.01876</td>
</tr>
<tr>
<td>4 A - B = 0</td>
<td>1.952</td>
<td>0.05088</td>
<td>0.06106</td>
</tr>
<tr>
<td>5 A - C = 0</td>
<td>2.734</td>
<td>0.006253</td>
<td>0.01876</td>
</tr>
<tr>
<td>6 B - C = 0</td>
<td>1.952</td>
<td>0.05088</td>
<td>0.06106</td>
</tr>
</tbody>
</table>

library(rcompanion)

cldList(p.adjust ~ Comparison,
 data = PT,
 threshold = 0.05)

<table>
<thead>
<tr>
<th>Group</th>
<th>Letter</th>
<th>MonoLetter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>a</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>ab</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>b</td>
</tr>
</tbody>
</table>

Compact letter display output with `pairwisePermutationMatrix`

```r
### Order groups by median
```
Data$Factor = factor(Data$Factor,
 levels = c("D", "A", "B", "C"))

library(FSA)

headtail(Data)

Pairwise tests

library(rcompanion)

PM = pairwisePermutationMatrix(Response ~ Factor,
 data = Data,
 method="fdr")

PM

$Unadjusted

 D A B C
D NA 0.8096 0.03812 0.005505
A NA NA 0.05088 0.006253
B NA NA NA 0.050880
C NA NA NA NA

$Method

[1] "fdr"

$Adjusted

 D A B C
D 1.00000 0.80960 0.06106 0.01876
A 0.80960 1.00000 0.06106 0.01876
B 0.06106 0.06106 1.00000 0.06106
C 0.01876 0.01876 0.06106 1.00000

library(multcompView)

multcompLetters(PM$Adjusted,
 compare="<",
 threshold=0.05,
 Letters=letters,
 reversed = FALSE)

 D A B C
"a" "a" "ab" "b"

#
Nested Anova

Examples in *Summary and Analysis of Extension Program Evaluation*

SAEPEPR: Using Random Effects in Models
SAEPEPR: What are Least Square Means?
SAEPEPR: One-way ANOVA with Random Blocks

Packages used in this chapter
The following commands will install these packages if they are not already installed:

```r
if(!require(nlme)){install.packages("nlme")}
if(!require(multcomp)){install.packages("multcomp")}
if(!require(multcompView)){install.packages("multcompView")}
if(!require(lsmeans)){install.packages("lsmeans")}
if(!require(lme4)){install.packages("lme4")}
if(!require(lmerTest)){install.packages("lmerTest")}
if(!require(TukeyC)){install.packages("TukeyC")}
```

When to use it
Null hypotheses
How the test works
Partitioning variance and optimal allocation of resources
Unequal sample sizes
Assumptions
Example
Graphing the results
Similar tests
See the *Handbook* for information on these topics.

How to do the test
Nested anova example with mixed effects model (nlme)
One approach to fit a nested anova is to use a mixed effects model. Here *Tech* is being treated as a fixed effect, while *Rat* is treated as a random effect. Note that the F-value and p-value for the test on *Tech* agree with the values in the *Handbook*. The effect of *Rat* will be tested by comparing this model to a model without the *Rat* term. The model is fit using the *lme* function in *nlme*.

```r
### Nested anova, SAS example, pp. 171-173
### ----------------------------------------

Input =("'
Tech   Rat   Protein
Janet 1  1.119
Janet 1  1.2996
Janet 1  1.5407
Janet 1  1.5084
```
<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Janet 1</td>
<td>1.6181</td>
</tr>
<tr>
<td>Janet 1</td>
<td>1.5962</td>
</tr>
<tr>
<td>Janet 1</td>
<td>1.2617</td>
</tr>
<tr>
<td>Janet 1</td>
<td>1.2288</td>
</tr>
<tr>
<td>Janet 1</td>
<td>1.3471</td>
</tr>
<tr>
<td>Janet 1</td>
<td>1.0206</td>
</tr>
<tr>
<td>Janet 2</td>
<td>1.045</td>
</tr>
<tr>
<td>Janet 2</td>
<td>1.1418</td>
</tr>
<tr>
<td>Janet 2</td>
<td>1.2569</td>
</tr>
<tr>
<td>Janet 2</td>
<td>0.6191</td>
</tr>
<tr>
<td>Janet 2</td>
<td>1.4823</td>
</tr>
<tr>
<td>Janet 2</td>
<td>0.8991</td>
</tr>
<tr>
<td>Janet 2</td>
<td>0.8365</td>
</tr>
<tr>
<td>Janet 2</td>
<td>1.2898</td>
</tr>
<tr>
<td>Janet 2</td>
<td>1.1821</td>
</tr>
<tr>
<td>Janet 2</td>
<td>0.9177</td>
</tr>
<tr>
<td>Janet 3</td>
<td>0.9873</td>
</tr>
<tr>
<td>Janet 3</td>
<td>0.9873</td>
</tr>
<tr>
<td>Janet 3</td>
<td>0.8714</td>
</tr>
<tr>
<td>Janet 3</td>
<td>0.9452</td>
</tr>
<tr>
<td>Janet 3</td>
<td>1.1186</td>
</tr>
<tr>
<td>Janet 3</td>
<td>1.2909</td>
</tr>
<tr>
<td>Janet 3</td>
<td>1.1502</td>
</tr>
<tr>
<td>Janet 3</td>
<td>1.1635</td>
</tr>
<tr>
<td>Janet 3</td>
<td>1.151</td>
</tr>
<tr>
<td>Janet 3</td>
<td>0.9367</td>
</tr>
<tr>
<td>Brad 5</td>
<td>1.3883</td>
</tr>
<tr>
<td>Brad 5</td>
<td>1.104</td>
</tr>
<tr>
<td>Brad 5</td>
<td>1.1581</td>
</tr>
<tr>
<td>Brad 5</td>
<td>1.319</td>
</tr>
<tr>
<td>Brad 5</td>
<td>1.1803</td>
</tr>
<tr>
<td>Brad 5</td>
<td>0.8738</td>
</tr>
<tr>
<td>Brad 5</td>
<td>1.387</td>
</tr>
<tr>
<td>Brad 5</td>
<td>1.301</td>
</tr>
<tr>
<td>Brad 5</td>
<td>1.3925</td>
</tr>
<tr>
<td>Brad 5</td>
<td>1.0832</td>
</tr>
<tr>
<td>Brad 6</td>
<td>1.3952</td>
</tr>
<tr>
<td>Brad 6</td>
<td>0.9714</td>
</tr>
<tr>
<td>Brad 6</td>
<td>1.3972</td>
</tr>
<tr>
<td>Brad 6</td>
<td>1.5369</td>
</tr>
<tr>
<td>Brad 6</td>
<td>1.3727</td>
</tr>
<tr>
<td>Brad 6</td>
<td>1.2909</td>
</tr>
<tr>
<td>Brad 6</td>
<td>1.1874</td>
</tr>
<tr>
<td>Brad 6</td>
<td>1.1374</td>
</tr>
<tr>
<td>Brad 6</td>
<td>1.0647</td>
</tr>
<tr>
<td>Brad 6</td>
<td>0.9486</td>
</tr>
<tr>
<td>Brad 7</td>
<td>1.2574</td>
</tr>
<tr>
<td>Brad 7</td>
<td>1.0295</td>
</tr>
<tr>
<td>Brad 7</td>
<td>1.1941</td>
</tr>
<tr>
<td>Brad 7</td>
<td>1.0759</td>
</tr>
<tr>
<td>Brad 7</td>
<td>1.3249</td>
</tr>
<tr>
<td>Brad 7</td>
<td>0.9494</td>
</tr>
<tr>
<td>Brad 7</td>
<td>1.1041</td>
</tr>
<tr>
<td>Brad 7</td>
<td>1.1575</td>
</tr>
<tr>
<td>Brad 7</td>
<td>1.294</td>
</tr>
</tbody>
</table>
Data = read.table(textConnection(Input),header=TRUE)

Since Rat is read in as an integer variable, convert it to factor
Data$Rat = as.factor(Data$Rat)

library(nlme)

model = lme(Protein ~ Tech, random=~1|Rat,
 data=Data,
 method="REML")

anova.lme(model,
 type="sequential",
 adjustSigma = FALSE)

 numDF denDF F-value p-value
(Intercept) 1 54 587.8664 <.0001
Tech 1 4 0.2677 0.6322

Post-hoc comparison of means
Note that "Tukey" here instructs the glht function to compare all means, not to perform a Tukey adjustment of multiple comparisons.

library(multcomp)

posthoc = glht(model,
 linfct = mcp(Tech="Tukey"))

mcs = summary(posthoc,
 test=adjusted("single-step"))

mcs

Adjustment options: "none", "single-step", "Shaffer",
"Westfall", "free", "holm", "hochberg",
"hommel", "bonferroni", "BH", "BY", "fdr"

Linear Hypotheses:

| Estimate | Std. Error | z value | Pr(>|z|) |
|----------|------------|---------|----------|
| Janet - Brad == 0 | -0.05060 | 0.09781 | -0.517 | 0.605 |

cld(mcs,
 level=0.05,
 decreasing=TRUE)

Brad Janet
 "a" "a"

Means sharing a letter are not significantly different
Post-hoc comparison of least-square means

Least squares means are adjusted for other terms in the model. If the experimental design is unbalanced or there is missing data, the least square means may differ significantly from arithmetic means for treatments, but are generally more representative of the population means than the arithmetic means would be.

Note that the adjustments for multiple comparisons (adjust = "tukey") appears in both the *lsmeans* and *cld* functions.

```r
library(multcompView)
library(lsmeans)

leastsquare = lsmeans(model, 
  pairwise ~ Tech, 
  adjust="tukey")

leastsquare
```

```
$lsmeans
  Tech  lsmean     SE  df lower.CL upper.CL
Brad  1.211023 0.069161  5  1.033  1.388806
Janet 1.160420 0.069161  4  0.9683995 1.352440

Confidence level used: 0.95

$contrasts
  contrast    estimate     SE  df t.ratio p.value
Brad - Janet  0.05060333 0.097808  4   0.517  0.6322
```

```r
cld(leastsquare, 
  alpha=0.05, 
  Letters=letters, 
  adjust="tukey")
```

```
Tech  lsmean     SE  df asymp.LCL asymp.UCL .group
Janet 1.160420 0.069161 NA 1.005745  1.315095  a
Brad  1.211023 0.069161 NA 1.056348  1.365698  a

### Means sharing a letter in .group are not significantly different
```

Test the significance of the random effect in the mixed effects model

In order to test the significance of the random effect from our model (*Rat*), we can fit a new model with only the fixed effects from the model. For this we use the *gls* function in the *nlme* package. We then compare the two models with the *anova* function. Note that the p-value does not agree with p-value from the *Handbook*, because the technique is different, though in this case the conclusion is the same. As a general precaution, if your models are fit with “REML” (restricted maximum likelihood) estimation, then you should compare only models with the
same fixed effects. If you need to compare models with different fixed effects, use “ML” as the estimation method for all models.

```r
model.fixed = gls(Protein ~ Tech, 
data=Data, 
method="REML")
```

```r
anova(model, 
model.fixed)
```

<table>
<thead>
<tr>
<th>Model</th>
<th>df</th>
<th>AIC</th>
<th>BIC</th>
<th>logLik</th>
<th>Test</th>
<th>L.Ratio</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>model</td>
<td>1</td>
<td>-7.819054</td>
<td>0.4227176</td>
<td>7.909527</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>model.fixed</td>
<td>2</td>
<td>-4.499342</td>
<td>1.6819872</td>
<td>5.249671</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Checking assumptions of the model

```r
hist(residuals(model), 
col="darkgray")
```

A histogram of residuals from a linear model. The distribution of these residuals should be approximately normal.

```r
plot(fitted(model), 
residuals(model))
```
A plot of residuals vs. predicted values. The residuals should be unbiased and homoscedastic. For an illustration of these properties, see this diagram by Steve Jost at DePaul University: condor.depaul.edu/sjost/it223/documents/resid-plots.gif.

additional model checking plots with: plot(model)

#

Mixed effects model with lmer
The following is an abbreviated example of a nested anova using the `lmer` function in the `lme4` package. See the previous example in this chapter for explanation and model-checking.

```r
Input =("Tech  Rat  Protein
Janet 1  1.119
Janet 1  1.2996
Janet 1  1.5407
Janet 1  1.5084
Janet 1  1.6181
Janet 1  1.5962
Janet 1  1.2617
Janet 1  1.2288
Janet 1  1.3471
Janet 1  1.0206
Janet 2  1.045
Janet 2  1.1418
Janet 2  1.2569
Janet 2  0.6191
```

138
```r
Janet 2   1.4823
Janet 2   0.8991
Janet 2   0.8365
Janet 2   1.2898
Janet 2   1.1821
Janet 2   0.9177
Janet 3   0.9873
Janet 3   0.9873
Janet 3   0.8714
Janet 3   0.9452
Janet 3   1.1186
Janet 3   1.2909
Janet 3   1.1502
Janet 3   1.1635
Janet 3   1.151
Janet 3   0.9367
Brad   5   1.3883
Brad   5   1.104
Brad   5   1.1581
Brad   5   1.319
Brad   5   1.1803
Brad   5   0.8738
Brad   5   1.387
Brad   5   1.301
Brad   5   1.3925
Brad   5   1.0832
Brad   6   1.3952
Brad   6   0.9714
Brad   6   1.3972
Brad   6   1.5369
Brad   6   1.3727
Brad   6   1.2909
Brad   6   1.1874
Brad   6   1.1374
Brad   6   1.0647
Brad   6   0.9486
Brad   7   1.2574
Brad   7   1.0295
Brad   7   1.1941
Brad   7   1.0759
Brad   7   1.3249
Brad   7   0.9494
Brad   7   1.1041
Brad   7   1.1575
Brad   7   1.294
Brad   7   1.4543
```

```r
Data = read.table(textConnection(Input),header=TRUE)

Data$Rat = as.factor(Data$Rat)

library(lme4)
library(lmerTest)
```
model = lmer(Protein ~ Tech + (1|Rat),
data=Data,
REML=TRUE)

anova(model)

Analysis of Variance Table of type III with Satterthwaite approximation for degrees of freedom

<table>
<thead>
<tr>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>NumDF</th>
<th>DenDF</th>
<th>F.value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tech</td>
<td>0.0096465</td>
<td>0.0096465</td>
<td>1</td>
<td>4</td>
<td>0.26768</td>
</tr>
</tbody>
</table>

rand(model)

Analysis of Random effects Table:

<table>
<thead>
<tr>
<th>Chi.sq</th>
<th>Chi.DF</th>
<th>p.value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat</td>
<td>5.32</td>
<td>0.02 *</td>
</tr>
</tbody>
</table>

difflsmeans(model, test.effs="Tech")

Differences of LSMEANS:

<table>
<thead>
<tr>
<th>Estimate</th>
<th>Standard Error</th>
<th>DF</th>
<th>t-value</th>
<th>Lower CI</th>
<th>Upper CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tech Brad - Janet</td>
<td>0.1</td>
<td>0.09781</td>
<td>4.0</td>
<td>0.52</td>
<td>-0.221</td>
<td>0.322</td>
</tr>
</tbody>
</table>

library(multcomp)

posthoc = glht(model, linfct = mcp(Tech="Tukey"))

mcs = summary(posthoc,
test=adjusted("single-step"))

mcs

Linear Hypotheses:

| Estimate Std. Error | z value | Pr(>|z|) |
|---------------------|---------|---------|
| Janet - Brad == 0 | 0 -0.05060 | 0.09781 | -0.517 | 0.605 |

(Adjusted p values reported -- single-step method)

cld(mcs, level=0.05, decreasing=TRUE)

Brad Janet
"a" "a"
#

Nested anova example with the aov function

###--
Nested anova, SAS example, pp. 171-173

Input =
```
Tech  Rat  Protein
Janet 1  1.119
Janet 1  1.2996
Janet 1  1.5407
Janet 1  1.5084
Janet 1  1.6181
Janet 1  1.5962
Janet 1  1.2617
Janet 1  1.2288
Janet 1  1.3471
Janet 1  1.0206
Janet 2  1.045
Janet 2  1.1418
Janet 2  1.2569
Janet 2  0.6191
Janet 2  1.4823
Janet 2  0.8991
Janet 2  0.8365
Janet 2  1.2898
Janet 2  1.1821
Janet 2  0.9177
Janet 3  0.9873
Janet 3  0.9873
Janet 3  0.8714
Janet 3  0.9452
Janet 3  1.1186
Janet 3  1.2909
Janet 3  1.1502
Janet 3  1.1635
Janet 3  1.151
Janet 3  0.9367
Brad  5  1.3883
Brad  5  1.104
Brad  5  1.1581
Brad  5  1.319
Brad  5  1.1803
Brad  5  0.8738
Brad  5  1.387
Brad  5  1.301
Brad  5  1.3925
Brad  5  1.0832
Brad  6  1.3952
Brad  6  0.9714
Brad  6  1.3972
Brad  6  1.5369
Brad  6  1.3727
Brad  6  1.2909
Brad  6  1.1874
Brad  6  1.1374
Brad  6  1.0647
Brad  6  0.9486
```
Brad 7 1.2574
Brad 7 1.0295
Brad 7 1.1941
Brad 7 1.0759
Brad 7 1.3249
Brad 7 0.9494
Brad 7 1.1041
Brad 7 1.1575
Brad 7 1.2940
Brad 7 1.4543

Data = read.table(textConnection(Input),header=TRUE)

Since Rat is read in as an integer variable, convert it to factor
Data$Rat = as.factor(Data$Rat)

Using the **aov** function for a nested anova
The **aov** function in the native stats package allows you to specify an error component to the model. When formulating this model in R, the correct error is `Rat`, not `Tech/Rat` (Rat within Tech) as used in the SAS example. The SAS model will tolerate `Rat` or `Rat(Tech)`.

The summary of the **aov** will produce the correct test for `Tech`. The test for `Rat` can be performed by manually calculating the p-value for the F-test using the output for `Error:Rat` and `Error:Within`.

See the rattlesnake example in the *Two-way anova* chapter for designating an error term in a repeated-measures model.

```r
fit = aov(Protein ~ Tech + Error(Rat), data=Data)
summary(fit)
```

```
  Df Sum Sq Mean Sq  F value Pr(>F)  
Tech   1 0.0384 0.03841  0.2681  0.632  
Residuals 4 0.5740 0.14349

### This matches “use for groups” in the Handbook

Using Mean Sq and Df values to get p-value for H = Tech and Error = Rat
```

```r
pf(q=0.03841/0.14349,
    df1=1,
    df2=4,
    lower.tail=FALSE)
```

```
[1] 0.6321845

### Note: This is same test as summary(fit)
```
Using Mean Sq and Df values to get p-value for H = Rat and Error = Within

```
summary(fit)
```

```
Error: Within
        Df  Sum Sq Mean Sq F value Pr(>F)
Residuals 54    1.946  0.03604
```

```
pf(q=0.14349/0.03604,
    df1=4,
    df2=54,
    lower.tail=F)
```

```
[1] 0.006663615
```

Matches "use for subgroups" in the Handbook

Post-hoc comparison of means with Tukey

The `aov` function with an `Error` component produces an object of `aovlist` type, which unfortunately isn't handled by many post-hoc testing functions. However, in the `TukeyC` package, you can specify a model and error term. For unbalanced data, the `dispersion` parameter may need to be modified.

```
library(TukeyC)
```

```
tuk = TukeyC(Data,
            model = 'Protein ~ Tech + Error(Rat)',
            error = 'Rat',
            which = 'Tech',
            fl1=1,
            sig.level = 0.05)
```

```
summary(tuk)
```

```
Groups of means at sig.level = 0.05
Means G1
Brad 1.21  a
Janet 1.16  a
```
Two-way Anova

SAEPEER: Two-way ANOVA
SAEPEER: Using Random Effects in Models
SAEPEER: What are Least Square Means?

Packages used in this chapter
The following commands will install these packages if they are not already installed:

```r
if(!require(FSA)){install.packages("FSA")}
if(!require(ggplot2)){install.packages("ggplot2")}
if(!require(car)){install.packages("car")}
if(!require(multcompView)){install.packages("multcompView")}
if(!require(lsmeans)){install.packages("lsmeans")}
if(!require(grid)){install.packages("grid")}
if(!require(nlme)){install.packages("nlme")}
if(!require(lme4)){install.packages("lme4")}
if(!require(lmerTest)){install.packages("lmerTest")}
if(!require(rcompanion)){install.packages("rcompanion")}
```

When to use it
Null hypotheses
How the test works
Assumptions
See the Handbook for information on these topics.

Examples
The rattlesnake example is shown at the end of the “How to do the test” section.

How to do the test
For notes on linear models and conducting anova, see the “How to do the test” section in the One-way anova chapter of this book. For two-way anova with robust regression, see the chapter on Two-way Anova with Robust Estimation.

Two-way anova example

```r
### -----------------------------------------------
### Two-way anova, SAS example, pp. 179–180
### -----------------------------------------------

Input = ("id Sex Genotype Activity
1 male ff 1.884
2 male ff 2.283
3 male fs 2.396
4 female ff 2.838
5 male fs 2.956
6 female ff 4.216
7 female ss 3.620
8 female ff 2.889
9 female fs 3.550
10 male fs 3.105
```
Means and summary statistics by group

library(FSA)

Sum = Summarize(Activity ~ Sex + Genotype, data = Data)

Sum

<table>
<thead>
<tr>
<th></th>
<th>Sex</th>
<th>Genotype</th>
<th>n</th>
<th>mean</th>
<th>sd</th>
<th>min</th>
<th>Q1</th>
<th>median</th>
<th>Q3</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>female</td>
<td>ff</td>
<td>8</td>
<td>3.05025</td>
<td>0.9599032</td>
<td>1.811</td>
<td>2.363</td>
<td>4.008</td>
<td>4.216</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>male</td>
<td>ff</td>
<td>4</td>
<td>3.14800</td>
<td>1.3745115</td>
<td>1.884</td>
<td>2.183</td>
<td>3.849</td>
<td>4.939</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>female</td>
<td>fs</td>
<td>8</td>
<td>3.31825</td>
<td>1.1445388</td>
<td>1.943</td>
<td>2.189</td>
<td>3.318</td>
<td>4.350</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>male</td>
<td>fs</td>
<td>4</td>
<td>2.77650</td>
<td>0.3168433</td>
<td>2.396</td>
<td>2.586</td>
<td>2.802</td>
<td>2.993</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>female</td>
<td>ss</td>
<td>8</td>
<td>3.23450</td>
<td>0.3617754</td>
<td>2.669</td>
<td>3.028</td>
<td>3.594</td>
<td>3.673</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>male</td>
<td>ss</td>
<td>4</td>
<td>3.40175</td>
<td>0.6348109</td>
<td>2.801</td>
<td>3.033</td>
<td>3.266</td>
<td>3.634</td>
<td></td>
</tr>
</tbody>
</table>

Add standard error

Sum$se = Sum$sd/sqrt(Sum$n)

Sum
Two-way Anova

AN R Companion for the Handbook of Biological Statistics

<table>
<thead>
<tr>
<th>Sex</th>
<th>Genotype</th>
<th>n</th>
<th>mean</th>
<th>sd</th>
<th>min</th>
<th>Q1</th>
<th>median</th>
<th>Q3</th>
<th>max</th>
<th>se</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>female</td>
<td>8</td>
<td>3.050</td>
<td>0.96</td>
<td>1.81</td>
<td>2.36</td>
<td>2.86</td>
<td>3.00</td>
<td>4.21</td>
<td>0.34</td>
</tr>
<tr>
<td>2</td>
<td>male</td>
<td>4</td>
<td>3.15</td>
<td>1.37</td>
<td>1.88</td>
<td>2.18</td>
<td>2.84</td>
<td>3.84</td>
<td>4.94</td>
<td>0.69</td>
</tr>
<tr>
<td>3</td>
<td>female</td>
<td>8</td>
<td>3.15</td>
<td>0.70</td>
<td>1.94</td>
<td>2.19</td>
<td>3.31</td>
<td>4.35</td>
<td>4.77</td>
<td>0.40</td>
</tr>
<tr>
<td>4</td>
<td>male</td>
<td>4</td>
<td>2.78</td>
<td>0.32</td>
<td>2.39</td>
<td>2.58</td>
<td>2.80</td>
<td>3.10</td>
<td>3.10</td>
<td>0.16</td>
</tr>
<tr>
<td>5</td>
<td>female</td>
<td>8</td>
<td>3.23</td>
<td>0.36</td>
<td>2.67</td>
<td>3.03</td>
<td>3.16</td>
<td>3.59</td>
<td>3.67</td>
<td>0.13</td>
</tr>
<tr>
<td>6</td>
<td>male</td>
<td>4</td>
<td>3.40</td>
<td>0.63</td>
<td>2.80</td>
<td>3.03</td>
<td>3.27</td>
<td>3.63</td>
<td>4.27</td>
<td>0.32</td>
</tr>
</tbody>
</table>

Interaction plot using summary statistics

```r
library(ggplot2)
pd = position_dodge(.2)

ggplot(Sum, aes(x=Genotype, y=mean, color=Sex)) +
  geom_errorbar(aes(ymin=mean-se, ymax=mean+se),
                width=.2, size=0.7, position=pd) +
  geom_point(shape=15, size=4, position=pd) +
  theme_bw() +
  theme(axis.title.y = element_text(vjust= 1.8),
        axis.title.x = element_text(vjust= -0.5),
        axis.title = element_text(face = "bold")) +
  scale_color_manual(values = c("black", "blue")) +
  ylab("Activity")
```

You may see an error, “ymax not defined”

In this case, it does not appear to affect anything
Interaction plot for a two-way anova. Square points represent means for groups, and error bars indicate standard errors of the mean.

Simple box plot of main effect and interaction

```r
boxplot(Activity ~ Genotype, 
    data = Data, 
    xlab = "Genotype", 
    ylab = "MPI Activity")
```

```r
boxplot(Activity ~ Genotype:Sex, 
    data = Data, 
    xlab = "Genotype x Sex", 
    ylab = "MPI Activity")
```
Fit the linear model and conduct ANOVA

```r
model = lm(Activity ~ Sex + Genotype + Sex:Genotype, 
data=Data)

library(car)

Anova(model, 
   type="II")   ### Type II sum of squares

### If you use type="III", you need the following line before the analysis
### options(contrasts = c("contr.sum", "contr.poly"))

Sum Sq Df  F value Pr(>F)
Sex    0.0681  1  0.0861 0.7712
Genotype  0.2772  2  0.1754 0.8400
Sex:Genotype  0.8146  2  0.5153 0.6025
Residuals  23.7138 30

anova(model)   # Produces type I sum of squares

Df  Sum Sq Mean Sq  F value Pr(>F)
Sex    1   0.0681 0.06808  0.0861 0.7712
Genotype  2  0.2772 0.13862  0.1754 0.8400
Sex:Genotype  2  0.8146 0.40732  0.5153 0.6025
Residuals  30 23.7138 0.79046

summary(model) # Produces r-square, overall p-value, parameter estimates
```
Checking assumptions of the model

```r
hist(residuals(model),
     col="darkgray")
```

A histogram of residuals from a linear model. The distribution of these residuals should be approximately normal.

```r
plot(fitted(model),
     residuals(model))
```

A plot of residuals vs. predicted values. The residuals should be unbiased and homoscedastic. For an illustration of these properties, see this diagram by Steve Jost at DePaul University:

condor.depaul.edu/sjost/it223/documents/resid-plots.gif

additional model checking plots with: `plot(model)`
alternative: library(FSA); residPlot(model)

Post-hoc comparison of least-square means
For notes on least-square means, see the “Post-hoc comparison of least-square means” section in the Nested anova chapter in this book.

One advantage of the using the `lsmeans` package for post-hoc tests is that it can produce comparisons for interaction effects.

In general, if the interaction effect is significant, you will want to look at comparisons of means for the interactions. If the interaction effect is not significant but a main effect is, it is appropriate to look at comparisons among the means for that main effect. In this case, because no effect of Sex, Genotype, or Sex:Genotype was significant, we would not actually perform any mean separation test.

Mean separations for main factor with lsmeans

```r
library(multcompView)
library(lsmeans)

lsmeans = lsmeans::lsmeans ### Uses the lsmeans function
                 ### from the lsmeans package,
                 ### not from the lmerTest package

leastsquare = lsmeans(model,
                      pairwise ~ Genotype,
                      adjust="tukey")

cld(leastsquare,
   alpha=.05,
   Letters=letters,
   adjust="tukey")

   Genotype  lsmean        SE   df lower.CL upper.CL .group
     fs       3.047375 0.2722236 30  2.697994  3.396756  a
     ss       3.318125 0.2722236 30  2.668745  3.967505  a
     ff       3.099125 0.2722236 30  2.749745  3.448505  a

### Means sharing a letter in .group are not significantly different
```

Mean separations for interaction effect with lsmeans

```r
library(multcompView)
library(lsmeans)

lsmeans = lsmeans::lsmeans ### Uses the lsmeans function
                 ### from the lsmeans package,
                 ### not from the lmerTest package

leastsquare = lsmeans(model,
                      pairwise ~ Genotype:
                      adjust="tukey")

cld(leastsquare,
   alpha=.05,
   Letters=letters,
   adjust="tukey")

   Genotype  lsmean        SE   df lower.CL upper.CL .group
     fs:ss    0.27075 0.1111111 30  0.058657  0.482843  a
     fs:ff    0.05182 0.1111111 30  0.020747  0.082907  a
     ss:ss    0.03063 0.1111111 30  0.009557  0.051707  a
     ss:ff    0.22093 0.1111111 30  0.099857  0.341007  a
     ff:ss    0.22093 0.1111111 30  0.099857  0.341007  a

### Means sharing a letter in .group are not significantly different
```


```r
pairwise ~ Sex:Genotype,
adjust="tukey")

cld(leastsquare,
    alpha=.05,
    Letters=letters,
    adjust="tukey")

Sex  Genotype  lsmean        SE df lower.CL upper.CL .group
male  fs       2.77650 0.4445393 30 1.524666 4.028334  a
female ff      3.05025 0.3143368 30 2.165069 3.935431  a
male  ff       3.14800 0.4445393 30 1.896166 4.399834  a
female ss      3.23450 0.3143368 30 2.349319 4.119681  a
female fs      3.31825 0.3143368 30 2.433069 4.203431  a
male  ss       3.40175 0.4445393 30 2.149916 4.653584  a

### Note that means are listed from low to high,
### not in the same order as Summarize

**Graphing the results**

Simple bar plot with categories and no error bars

```r
Re-enter data as matrix

Input =("Sex ff fs ss
Female 3.05025 3.31825 3.23450
Male 3.14800 2.77650 3.40175"
)

Matriz = as.matrix(read.table(textConnection(Input),
 header=TRUE,
 row.names=1))

Matriz

 ff fs ss
Female 3.05025 3.31825 3.23450
Male 3.14800 2.77650 3.40175

barplot(Matriz,
 beside=TRUE,
 legend=TRUE,
 ylim=c(0, 5),
 xlab="Genotype",
 ylab="MPI Activity")
```
Bar plot with error bars with *ggplot2*

This plot uses the data frame created by *Summarize* in *FSA*. Error bars indicate standard error of the means (se in the data frame).

```r
library(FSA)

Sum = Summarize(Activity ~ Sex + Genotype,
data = Data)

Sum

Add standard error

Sum$se = Sum$sd/sqrt(Sum$n)

Sum

<table>
<thead>
<tr>
<th>Sex</th>
<th>Genotype</th>
<th>n</th>
<th>mean</th>
<th>sd</th>
<th>min</th>
<th>Q1</th>
<th>median</th>
<th>Q3</th>
<th>max</th>
<th>se</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>female</td>
<td>ff</td>
<td>8</td>
<td>3.05</td>
<td>0.96</td>
<td>1.81</td>
<td>2.36</td>
<td>2.86</td>
<td>4.00</td>
<td>0.34</td>
</tr>
<tr>
<td>2</td>
<td>male</td>
<td>ff</td>
<td>4</td>
<td>3.15</td>
<td>1.37</td>
<td>1.88</td>
<td>2.18</td>
<td>2.88</td>
<td>3.84</td>
<td>0.69</td>
</tr>
<tr>
<td>3</td>
<td>female</td>
<td>fs</td>
<td>8</td>
<td>3.32</td>
<td>1.14</td>
<td>1.94</td>
<td>2.19</td>
<td>3.32</td>
<td>4.35</td>
<td>0.40</td>
</tr>
<tr>
<td>4</td>
<td>male</td>
<td>fs</td>
<td>4</td>
<td>2.78</td>
<td>0.32</td>
<td>2.39</td>
<td>2.58</td>
<td>2.80</td>
<td>2.99</td>
<td>0.16</td>
</tr>
<tr>
<td>5</td>
<td>female</td>
<td>ss</td>
<td>8</td>
<td>3.23</td>
<td>0.36</td>
<td>2.68</td>
<td>3.06</td>
<td>3.15</td>
<td>3.59</td>
<td>0.13</td>
</tr>
<tr>
<td>6</td>
<td>male</td>
<td>ss</td>
<td>4</td>
<td>3.40</td>
<td>0.63</td>
<td>2.80</td>
<td>3.03</td>
<td>3.27</td>
<td>3.63</td>
<td>0.32</td>
</tr>
</tbody>
</table>
```

### Plot adapted from:

shinyapps.stat.ubc.ca/r-graph-catalog/

```r
library(ggplot2)
library(grid)
```
```r
ggplot(Sum,
 aes(x = Genotype,
 y = mean,
 fill = Sex,
 ymax=mean+se,
 ymin=mean-se)) +
geom_bar(stat="identity", position = "dodge", width = 0.7) +
geom_bar(stat="identity", position = "dodge",
 colour = "black", width = 0.7,
 show.legend = FALSE) +
scale_y_continuous(breaks = seq(0, 4, 0.5),
 limits = c(0, 4),
 expand = c(0, 0)) +
scale_fill_manual(name = "Count type",
 values = c('grey80', 'grey30'),
 labels = c("Female", "Male")) +
geom_errorbar(position=position_dodge(width=0.7),
 width=0.0, size=0.5, color="black") +
labs(x = "Genotype",
 y = "MPI Activity") +
ggtitle("Main title") +
theme_bw() +
theme(panel.grid.major.x = element_blank(),
 panel.grid.major.y = element_line(colour = "grey50"),
 plot.title = element_text(size = rel(1.5),
 face = "bold", vjust = 1.5),
 axis.title = element_text(face = "bold"),
 legend.position = "top",
 legend.title = element_blank(),
 legend.key.size = unit(0.4, "cm"),
 legend.key = element_rect(fill = "black"),
 axis.title.y = element_text(vjust= 1.8),
 axis.title.x = element_text(vjust = -0.5))
```

![Graph showing two-way ANOVA results](image-url)
Bar plot for a two-way anova. Bar heights represent means for groups, and error bars indicate standard errors of the mean.

# # #

**Rattlesnake example – two-way anova without replication, repeated measures**
This example could be interpreted as two-way anova without replication or as a one-way repeated measures experiment. Below it is analyzed as a two-way fixed effects model using the `lm` function, and as a mixed effects model using the `nlme` package and `lme4` packages.

### Two-way anova, rattlesnake example, pp. 177–178

```r
Input = ("Day Snake Openings
1 D1 85
1 D3 107
1 D5 61
1 D8 22
1 D11 40
1 D12 65
2 D1 58
2 D3 51
2 D5 60
2 D8 41
2 D11 45
2 D12 27
3 D1 15
3 D3 30
3 D5 68
3 D8 63
3 D11 28
3 D12 3
4 D1 57
4 D3 12
4 D5 36
4 D8 21
4 D11 10
4 D12 16"
)
Data = read.table(textConnection(Input),header=TRUE)

Treat Day as a factor variable

```r
Data$Day = as.factor(Data$Day)
```  

Using two-way fixed effects model
Means and summary statistics by group

```r
library(FSA)

Sum = Summarize(Openings ~ Day,
                  data = Data)

Sum
```

<table>
<thead>
<tr>
<th>Day</th>
<th>n</th>
<th>mean</th>
<th>sd</th>
<th>min</th>
<th>Q1</th>
<th>median</th>
<th>Q3</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>63.33333</td>
<td>30.45434</td>
<td>22</td>
<td>45.25</td>
<td>63.0</td>
<td>80.00</td>
<td>107</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>47.00000</td>
<td>12.21475</td>
<td>27</td>
<td>42.00</td>
<td>48.0</td>
<td>56.25</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>34.50000</td>
<td>25.95958</td>
<td>3</td>
<td>18.25</td>
<td>29.0</td>
<td>54.75</td>
<td>68</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>25.33333</td>
<td>18.08498</td>
<td>10</td>
<td>13.00</td>
<td>18.5</td>
<td>32.25</td>
<td>57</td>
</tr>
</tbody>
</table>

Simple box plots

```r
boxplot(Openings ~ Day,
        data = Data,
        xlab = "Day",
        ylab = "Openings until tail stops rattling")
```

![Box plot of Openings by Day](image)

Fit the linear model and conduct ANOVA

```r
model = lm(Openings ~ Day + Snake,
           data=Data)

library(car)

Anova(model, type="II")  # Type II sum of squares

### If you use type="III", you need the following line before the analysis
### options(contrasts = c("contr.sum", "contr.poly"))
Two-way ANOVA

\[
\begin{array}{l|rrrr}
\text{Sum Sq} & \text{Df} & \text{F value} & \text{Pr(>F)} \\
\hline
\text{Day} & 4877.8 & 3 & 3.3201 & 0.04866 * \\
\text{Snake} & 3042.2 & 5 & 1.2424 & 0.33818 \\
\text{Residuals} & 7346.0 & 15 & \\
\end{array}
\]

\text{anova(model)} \quad \# \text{ Produces type I sum of squares}

\[
\begin{array}{l|rrrrr}
\text{Df} & \text{Sum Sq} & \text{Mean Sq} & \text{F value} & \text{Pr(>F)} \\
\hline
\text{Day} & 3 & 4877.8 & 1625.93 & 3.3201 & 0.04866 * \\
\text{Snake} & 5 & 3042.2 & 608.44 & 1.2424 & 0.33818 \\
\text{Residuals} & 15 & 7346.0 & 489.73 & \\
\end{array}
\]

\text{summary(model)} \quad \# \text{ Produces r-square, overall p-value,}
\# \text{ parameter estimates}

\begin{itemize}
\item Multiple R-squared: 0.5188, Adjusted R-squared: 0.2622
\item F-statistic: 2.022 on 8 and 15 DF, p-value: 0.1142
\end{itemize}

Checking assumptions of the model

\text{hist(residuals(model),}
\text{ col="darkgray")}

\text{Histogram of residuals(model)}

A histogram of residuals from a linear model. The distribution of these residuals should be approximately normal.

\text{plot(fitted(model),
\text{ residuals(model))}
A plot of residuals vs. predicted values. The residuals should be unbiased and homoscedastic. For an illustration of these properties, see this diagram by Steve Jost at DePaul University:
condor.depaul.edu/sjost/it223/documents/resid-plots.gif.

### additional model checking plots with: plot(model)
### alternative: library(FSA); residPlot(model)

Mean separations for main factor with *lsmeans*

For notes on least-square means, see the “Post-hoc comparison of least-square” means section in the Nested anova chapter in this book. For other mean separation techniques for a main factor in anova, see “Tukey and Least Significant Difference mean separation tests (pairwise comparisons)” section in the One-way anova chapter.

```r
library(multcompView)
library(lsmeans)

lsmeans = lsmeans::lsmeans ### Uses the lsmeans function
from the lsmeans package,
not from the lmerTest package

leastsquare = lsmeans(model, pairwise ~ Day,
adjust="tukey")

cld(leastsquare,
alpha=.05,
Letters=letters,
adjust="tukey")
```

<table>
<thead>
<tr>
<th>Day</th>
<th>lsmean</th>
<th>SE</th>
<th>df</th>
<th>lower.CL</th>
<th>upper.CL</th>
<th>.group</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>25.33333</td>
<td>9.034476</td>
<td>15</td>
<td>-0.2085871</td>
<td>50.87525</td>
<td>a</td>
</tr>
<tr>
<td>3</td>
<td>34.50000</td>
<td>9.034476</td>
<td>15</td>
<td>8.9580796</td>
<td>60.04192</td>
<td>ab</td>
</tr>
<tr>
<td>2</td>
<td>47.00000</td>
<td>9.034476</td>
<td>15</td>
<td>21.4580796</td>
<td>72.54192</td>
<td>ab</td>
</tr>
<tr>
<td>1</td>
<td>63.33333</td>
<td>9.034476</td>
<td>15</td>
<td>37.7914129</td>
<td>88.87525</td>
<td>b</td>
</tr>
</tbody>
</table>
### Means sharing a letter in .group are not significantly different

**Using mixed effects model with nlme**

This is an abbreviated example using the `lme` function in the `nlme` package.

```r
library(nlme)

model = lme(Openings ~ Day, random=~1|Snake,
data=Data,
method="REML")

anova.lme(model,
type="sequential",
adjustSigma = FALSE)
```

<table>
<thead>
<tr>
<th>numDF</th>
<th>denDF</th>
<th>F-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>1</td>
<td>15</td>
<td>71.38736</td>
</tr>
<tr>
<td>Day</td>
<td>3</td>
<td>15</td>
<td>3.32005</td>
</tr>
</tbody>
</table>

```r
library(multcompView)
library(lsmeans)

lsmeans = lsmeans::lsmeans # Uses the lsmeans function
 # from the lsmeans package,
 # not from the lmerTest package

leastsquare = lsmeans(model,
pairwise ~ Day,
alpha=.05,
adjust="tukey")

cld(leastsquare,
alpha=.05,
Letters=letters,
adjust="tukey")
```

<table>
<thead>
<tr>
<th>Day</th>
<th>lsmean</th>
<th>SE</th>
<th>df</th>
<th>lower.CL</th>
<th>upper.CL</th>
<th>.group</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>25.33333</td>
<td>9.3042</td>
<td>5</td>
<td>-9.94165</td>
<td>60.6083</td>
<td>a</td>
</tr>
<tr>
<td>3</td>
<td>34.50000</td>
<td>9.3042</td>
<td>5</td>
<td>-0.77498</td>
<td>69.7749</td>
<td>ab</td>
</tr>
<tr>
<td>2</td>
<td>47.00000</td>
<td>9.3042</td>
<td>5</td>
<td>11.72501</td>
<td>82.2749</td>
<td>ab</td>
</tr>
<tr>
<td>1</td>
<td>63.33333</td>
<td>9.3042</td>
<td>5</td>
<td>28.05835</td>
<td>98.6083</td>
<td>b</td>
</tr>
</tbody>
</table>

### Means sharing a letter in .group are not significantly different

**Using mixed effects model with lmer**

This is an abbreviated example using the `lmer` function in the `lme4` package.

```r
library(lme4)
library(lmerTest)

model = lmer(Openings ~ Day + (1|Snake),
```
```r
data = Data,
REML = TRUE)

anova(model)

Analysis of Variance Table of type III with Satterthwaite approximation for degrees of freedom

<table>
<thead>
<tr>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>NumDF</th>
<th>DenDF</th>
<th>F.value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4877.8</td>
<td>1625.9</td>
<td>3</td>
<td>15</td>
<td>3.3201</td>
<td>0.04866 *</td>
</tr>
</tbody>
</table>

rand(model)

Analysis of Random effects Table:

<table>
<thead>
<tr>
<th>Snake</th>
<th>Chi.sq</th>
<th>Chi.DF</th>
<th>p.value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0915</td>
<td>1</td>
<td>0.8</td>
<td></td>
</tr>
</tbody>
</table>

Least square means with the `lsmeans` package

```r
library(multcompView)
library(lsmeans)

lsmeans = lsmeans::lsmeans ### Uses the lsmeans function
### from the lsmeans package,
### not from the lmerTest package

leastsquare = lsmeans(model,
pairwise ~ Day,
alpha=.05,
adjust="tukey")

cld(leastsquare,
alpha=.05,
Letters=letters,
adjust="tukey")

<table>
<thead>
<tr>
<th>Day</th>
<th>lsmean</th>
<th>SE</th>
<th>df</th>
<th>lower.CL</th>
<th>upper.CL</th>
<th>.group</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>25.333333</td>
<td>9.304196</td>
<td>19.81</td>
<td>-0.1441779</td>
<td>50.81084</td>
<td>a</td>
</tr>
<tr>
<td>3</td>
<td>34.500000</td>
<td>9.304196</td>
<td>19.81</td>
<td>9.0224887</td>
<td>59.97751</td>
<td>ab</td>
</tr>
<tr>
<td>2</td>
<td>47.000000</td>
<td>9.304196</td>
<td>19.81</td>
<td>21.5224887</td>
<td>72.47751</td>
<td>ab</td>
</tr>
<tr>
<td>1</td>
<td>63.333333</td>
<td>9.304196</td>
<td>19.81</td>
<td>37.8558221</td>
<td>88.81084</td>
<td>b</td>
</tr>
</tbody>
</table>

Degrees-of-freedom method: satterthwaite
Confidence level used: 0.95
Conf-level adjustment: sidak method for 4 estimates
P value adjustment: tukey method for comparing a family of 4 estimates
significance level used: alpha = 0.05

### Means sharing a letter in .group are not significantly different
### Least square means using the `lmerTest` package

```r
lsmeans = lmerTest::lsmeans ### Uses the lsmeans function
from the lmerTest package,
not from the lsmeans package

LT = lsmeans(model,
 test.effs = "Day")

LT

<table>
<thead>
<tr>
<th>Day</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>DF</th>
<th>t-value</th>
<th>Lower CI</th>
<th>Upper CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td>63.33</td>
<td>9.30</td>
<td>19.8</td>
<td>6.81</td>
<td>43.91</td>
<td><2e-16 ***</td>
</tr>
<tr>
<td>2</td>
<td>2.0</td>
<td>47.00</td>
<td>9.30</td>
<td>19.8</td>
<td>5.05</td>
<td>27.58</td>
<td>1e-04 ***</td>
</tr>
<tr>
<td>3</td>
<td>3.0</td>
<td>34.50</td>
<td>9.30</td>
<td>19.8</td>
<td>3.71</td>
<td>15.08</td>
<td>0.001 **</td>
</tr>
<tr>
<td>4</td>
<td>4.0</td>
<td>25.33</td>
<td>9.30</td>
<td>19.8</td>
<td>2.72</td>
<td>5.91</td>
<td>0.013 *</td>
</tr>
</tbody>
</table>
```

```r
PT = difflsmeans(model,
 test.effs="Day")

PT

| Day 1 - 2 | 16.3 | 12.78 | 15.0 | 1.28 | -10.90 | 43.6 | 0.220 |
| Day 1 - 3 | 28.8 | 12.78 | 15.0 | 2.26 | 1.60 | 56.1 | 0.039 * |
| Day 1 - 4 | 38.0 | 12.78 | 15.0 | 2.97 | 10.77 | 65.2 | 0.009 **|
| Day 2 - 3 | 12.5 | 12.78 | 15.0 | 0.98 | -14.73 | 39.7 | 0.343 |
| Day 2 - 4 | 21.7 | 12.78 | 15.0 | 1.70 | -5.57 | 48.9 | 0.111 |
| Day 3 - 4 | 9.2 | 12.78 | 15.0 | 0.72 | -18.07 | 36.4 | 0.484 |
```

### Extract lsmeans table

```r
Sum = PT$diffs.lsmeans.table

Extract comparisons and p-values

```r
Comparison = rownames(Sum)

P.value = Sum$p-value'

### Adjust p-values

```r
P.value.adj = p.adjust(P.value,
 method = "none")

Fix names of comparisons

```r
Comparison = gsub("-", "- Day", Comparison)
```

160
Produce compact letter display

```r
library(rcompanion)

cldList(comparison = Comparison, 
        p.value    = P.value adj, 
        threshold = 0.05)

<table>
<thead>
<tr>
<th>Group</th>
<th>Letter</th>
<th>MonoLetter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Day1</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>Day2</td>
<td>ab</td>
</tr>
<tr>
<td>3</td>
<td>Day3</td>
<td>b</td>
</tr>
<tr>
<td>4</td>
<td>Day4</td>
<td>b</td>
</tr>
</tbody>
</table>
```

Two-way Anova with Robust Estimation

A two-way anova using robust estimators can be performed with the WRS2 package. Options for estimators are M-estimators, trimmed means, and medians. This type of analysis is resistant to deviations from the assumptions of the traditional ordinary-least-squares anova, and are robust to outliers. However, it may not be appropriate for data that deviate too widely from parametric assumptions.

The main analysis using M-estimators for a two-way anova is conducted with the `pbad2way` function in the WRS2 package. Post-hoc tests can be performed with the `mcp2a` function in the WRS2 package or with my custom functions `pairwiseRobustTest` and `pairwiseRobustMatrix`, which rely on the `pb2gen` function in WRS2.

My custom function `groupwiseHuber` uses the `HuberM` function in the `DescTools` package to determine the Huber M-estimators across groups in a data frame.

For more information on robust tests available in the WRS2 package, see:

```r
help(package="WRS2")
```

Consult the chapter on Two-way Anova for general consideration about conducting analysis of variance.

Packages used in this chapter

The following commands will install these packages if they are not already installed:

```r
if(!require(rcompanion)){install.packages("rcompanion")}
if(!require(ggplot2)){install.packages("ggplot2")}
if(!require(WRS2)){install.packages("WRS2")}
if(!require(multcompView)){install.packages("multcompView")}
if(!require(psych)){install.packages("psych")}
```
Example

```r
### Two-way anova with robust estimators, hypothetical data
### Using WRS2 package

Input = ("Factor.A  Factor.B  Response
l         x          0.9
l         y          1.4
l         x          1.3
l         y          2.0
l         x          1.6
l         y          2.6
m         x          2.4
m         y          3.6
m         x          2.8
m         y          3.7
m         x          3.2
m         y          3.0
n         x          1.6
n         y          1.2
n         x          2.0
n         y          1.9
n         x          2.7
n         y          0.9"
)

Data = read.table(textConnection(Input),header=TRUE)

library(rcompanion)

Sum = groupwiseHuber(Response ~ Factor.A + Factor.B,
data = Data,
conf.level=0.95,
conf.type="wald")

Sum

<table>
<thead>
<tr>
<th>Factor.A</th>
<th>Factor.B</th>
<th>n</th>
<th>M.Huber</th>
<th>lower.ci</th>
<th>upper.ci</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>l</td>
<td>x</td>
<td>3</td>
<td>1.266667</td>
<td>0.9421910</td>
</tr>
<tr>
<td>2</td>
<td>l</td>
<td>y</td>
<td>3</td>
<td>2.000000</td>
<td>1.4456385</td>
</tr>
<tr>
<td>3</td>
<td>m</td>
<td>x</td>
<td>3</td>
<td>2.800000</td>
<td>2.4304256</td>
</tr>
<tr>
<td>4</td>
<td>m</td>
<td>y</td>
<td>3</td>
<td>3.538805</td>
<td>3.2630383</td>
</tr>
<tr>
<td>5</td>
<td>n</td>
<td>x</td>
<td>3</td>
<td>2.100000</td>
<td>1.5855743</td>
</tr>
<tr>
<td>6</td>
<td>n</td>
<td>y</td>
<td>3</td>
<td>1.333333</td>
<td>0.8592063</td>
</tr>
</tbody>
</table>
```

162
Interaction plot using summary statistics

```r
library(ggplot2)

pd = position_dodge(.2)

ggplot(Sum, aes(x=Factor.A,
y=M.Huber,
color=Factor.B)) +
geom_errorbar(aes(ymin=lower.ci,
ymax=upper.ci),
width=.2, size=0.7, position=pd) +
geom_point(shape=15, size=4, position=pd) +
theme_bw() +
theme(
  axis.title.y = element_text(vjust= 1.8),
  axis.title.x = element_text(vjust=-0.5),
  axis.title = element_text(face = "bold")) +
scale_color_manual(values = c("black", "blue"))
```

Two-way analysis of variance for M-estimators

The `est = "mom"` option uses a modified M-estimator for the analysis. To analyze using medians, use the `est= "median"` option in the `pbad2way` function in the `WRS2` package. To analyze using trimmed means, use the `t2way` function in the `WRS2` package.

```r
library(WRS2)

data = Data,
est = "mom",             # modified M-estimator
nboot = 5000)            # number of bootstrap samples
                          # a higher number will take longer to compute

data = Data,
est = "median")
```

163
data = Data, est = "mom", nboot = 3000)

p.value
Factor.A 0.0000
Factor.B 0.3403
Factor.A:Factor.B 0.0460

Produce post-hoc tests for main effects with mcp2a

data = Data,
est = "mom", # M-estimator
nboot = 5000) # number of bootstrap samples

post$contrasts

post

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>l_x</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>l_y</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>m_x</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>m_y</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>n_x</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>n_y</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>V1</th>
<th>ci.lower</th>
<th>ci.upper</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor.A1</td>
<td>-3.18333</td>
<td>-4.20000</td>
<td>-1.60000</td>
<td>0.00000</td>
</tr>
<tr>
<td>Factor.A2</td>
<td>-0.16667</td>
<td>-1.70000</td>
<td>1.36667</td>
<td>0.40233</td>
</tr>
<tr>
<td>Factor.A3</td>
<td>3.01667</td>
<td>1.40000</td>
<td>4.05000</td>
<td>0.00000</td>
</tr>
<tr>
<td>Factor.B1</td>
<td>-0.81667</td>
<td>-2.28333</td>
<td>1.00000</td>
<td>0.22233</td>
</tr>
<tr>
<td>Factor.A1:Factor.B1</td>
<td>0.11667</td>
<td>-1.50000</td>
<td>1.16667</td>
<td>0.48033</td>
</tr>
<tr>
<td>Factor.A2:Factor.B1</td>
<td>-1.50000</td>
<td>-3.10000</td>
<td>0.00000</td>
<td>0.01767</td>
</tr>
<tr>
<td>Factor.A3:Factor.B1</td>
<td>-1.61667</td>
<td>-2.80000</td>
<td>0.00000</td>
<td>0.01433</td>
</tr>
</tbody>
</table>

The Factor.A1 contrast compares l to m; since it is significant,
l is significantly different than m.

The Factor.A2 contrast compares l to n; since it is not significant,
l is not significantly different than n.

Produce post-hoc tests for main effects with pairwiseRobustTest or pairwiseRobustMatrix

Table and compact letter display with pairwiseRobustTest

Order groups by median

Data$Factor.A = factor(Data$Factor.A,
levels = c("n", "l", "m"))
Pairwise robust test

```r
library(rcompanion)

PT = pairwiseRobustTest(x = Data$Response, 
g = Data$Factor.A, 
est = "mom", 
nboot = 5000, 
method = "fdr")

# adjust p-values; see ?p.adjust for options

PT

Comparison Statistic p.value p.adjust
1  n - l = 0  0.08333  0.7204  0.7204
2  n - m = 0  -1.4  0.0014  0.0021
3  l - m = 0  -1.483  6e-04  0.0018

### p-values may differ

### Produce compact letter display

library(rcompanion)

cldList(comparison = PT$Comparison, 
p.value    = PT$p.adjust, 
threshold  = 0.05)

Group Letter MonoLetter
1     n      a         a
2     l      a         a
3     m      b          b

Compact letter display output with `pairwiseRobustMatrix`

### Order groups by median

```r
Data$Factor = factor(Data$Factor,
levels = c("n", "l", "m"))

Pairwise robust tests

library(rcompanion)

PM = pairwiseRobustMatrix(x = Data$Response,
g = Data$Factor.A,
est = "mom",
nboot = 5000,
method = "fdr")

adjust p-values; see ?p.adjust for options
```
PM$Adjusted

<table>
<thead>
<tr>
<th></th>
<th>l</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>1.0000</td>
<td>0.7128</td>
</tr>
<tr>
<td>l</td>
<td>0.7128</td>
<td>1.0000</td>
</tr>
<tr>
<td>m</td>
<td>0.0006</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

### p-values may differ

library(multcompView)

multcompLetters(PM$Adjusted,
compare="<",
threshold=0.05,
Letters=letters,
reversed = FALSE)

<table>
<thead>
<tr>
<th></th>
<th>l</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;a&quot;</td>
<td>&quot;a&quot;</td>
<td>&quot;b&quot;</td>
</tr>
</tbody>
</table>

**Produce post-hoc tests for interaction effect**

### Create a factor which is the interaction of Factor.A and Factor.B

Data$Factor.int = interaction(Data$Factor.A, Data$Factor.B)

### Order groups by median

Data$Factor.int = factor(Data$Factor.int,
levels = c("m.y", "m.x", "n.x", "l.y", "n.y", "l.x"))

### Check data frame

library(psych)

headTail(Data)

<table>
<thead>
<tr>
<th>Factor.A</th>
<th>Factor.B</th>
<th>Response</th>
<th>Factor.int</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>y</td>
<td>3.6</td>
<td>m.y</td>
</tr>
<tr>
<td>m</td>
<td>y</td>
<td>3.7</td>
<td>m.y</td>
</tr>
<tr>
<td>m</td>
<td>x</td>
<td>2.4</td>
<td>m.x</td>
</tr>
<tr>
<td>&lt;NA&gt;</td>
<td>&lt;NA&gt;</td>
<td>&lt;NA&gt;</td>
<td>&lt;NA&gt;</td>
</tr>
<tr>
<td>n</td>
<td>y</td>
<td>0.9</td>
<td>n.y</td>
</tr>
<tr>
<td>l</td>
<td>x</td>
<td>0.9</td>
<td>l.x</td>
</tr>
<tr>
<td>l</td>
<td>x</td>
<td>1.3</td>
<td>l.x</td>
</tr>
<tr>
<td>l</td>
<td>x</td>
<td>1.6</td>
<td>l.x</td>
</tr>
</tbody>
</table>
Table and compact letter display with `pairwiseRobustTest`

```r
library(rcompanion)

PT = pairwiseRobustTest(x = Data$Response,
g = Data$Factor.int,
est = "mom",
nboot = 5000,
method = "fdr")

adjust p-values; see ?p.adjust for options

PT
```

```text
Comparison Statistic p.value p.adjust
1 m.y - m.x = 0 -0.85 0.1348 0.1615
2 m.y - n.x = 0 -1.55 0 0.0000
3 m.y - l.y = 0 -1.65 0 0.0000
4 m.y - n.y = 0 -2.317 0 0.0000
5 m.y - l.x = 0 -2.383 0 0.0000
6 m.x - n.x = 0 -0.7 0.1312 0.1615
7 m.x - l.y = 0 0.8 0.1228 0.1615
8 m.x - n.y = 0 1.467 0 0.0000
9 m.x - l.x = 0 -1.533 0 0.0000
10 n.x - l.y = 0 0.1 0.7798 0.8355
11 n.x - n.y = 0 0.7667 0.1344 0.1615
12 n.x - l.x = 0 0.8333 0.0664 0.1423
13 l.y - n.y = 0 -0.6667 0.14 0.1615
14 l.y - l.x = 0 -0.7333 0.1296 0.1615
15 n.y - l.x = 0 -0.06667 0.944 0.9440
```

### p-values may differ

### Produce compact letter display

```r
library(rcompanion)

cldList(comparison = PT$Comparison,
p.value = PT$p.adjust,
threshold = 0.05)
```

```text
Group Letter MonoLetter
1 m.y a a
2 m.x ab ab
3 n.x bc bc
4 l.y bc bc
5 n.y c c
6 l.x c c
```

Compact letter display output with `pairwiseRobustMatrix`

### Order groups by median

```r
Data$Factor.int = factor(Data$Factor.int,
```

167
levels = c("m.y", "m.x", "n.x", "l.y", "n.y", "l.x")

### Pairwise robust tests

```r
library(rcompanion)

PM = pairwiseRobustMatrix(x = Data$Response,
g = Data$Factor.int,
est = "mom",
nboot = 5000,
method = "fdr")
adjust p-values; see ?p.adjust for options

PM

$Unadjusted
 m.y m.x n.x l.y n.y l.x
m.y NA 0.1312 0.000 0.0000 0.0000 0.0000
m.x NA 0.126 0.1320 0.0000 0.0000
n.x NA NA 0.7638 0.1328 0.0680
l.y NA NA NA 0.1304 0.1408
n.y NA NA NA NA 0.9318
l.x NA NA NA NA NA

$Method
[1] "fdr"

$Adjusted
 m.y m.x n.x l.y n.y l.x
m.y 1.0000 0.1625 0.0000 0.0000 0.0000 0.0000
m.x 0.1625 1.0000 0.1625 0.1625 0.0000 0.0000
n.x 0.0000 0.1625 1.0000 0.8184 0.1625 0.1457
l.y 0.0000 0.1625 0.8184 1.0000 0.1625 0.1625
n.y 0.0000 0.0000 0.1625 0.1625 1.0000 0.9318
l.x 0.0000 0.0000 0.1457 0.1625 0.9318 1.0000

p-values may differ

library(multcompView)

multcompLetters(PM$Adjusted,
 compare="<",
 threshold=0.05,
 Letters=letters,
 reversed = FALSE)

m.y m.x n.x l.y n.y l.x
"a" "ab" "bc" "bc" "c" "c"

Note, means are not ordered from largest to smallest

#
Paired t–test

Paired t-tests can be conducted with the `t.test` function in the native `stats` package using the `paired=TRUE` option. Data can be in long format or short format. Examples of each are shown in this chapter.

As a non-parametric alternative to paired t-tests, a permutation test can be used. An example is shown in the “Permutation test for dependent samples” section of this chapter.

Examples in Summary and Analysis of Extension Program Evaluation

SAEEPER: Paired t-test
SAEEPER: One-way Permutation Test of Symmetry for Paired Ordinal Data

Packages used in this chapter
The following commands will install these packages if they are not already installed:

```r
if(!require(ggplot2)){install.packages("ggplot2")}
if(!require(coin)){install.packages("coin")}
if(!require(pwr)){install.packages("pwr")}
```

When to use it
The horseshoe crab example is shown at the end of the “How to do the test” section.

Null hypothesis
Assumption
How the test works
See the Handbook for information on these topics.

Examples
The flicker feather example is shown in the “How to do the test” section.

Graphing the results
Plots are shown in the “How to do the test” section.

How to do the test
Paired t-test, data in wide format, flicker feather example

```r
### Paired t-test, Flicker feather example, p. 185
### ---------------------------------------------

Input = ("Bird Typical Odd
A    -0.255   -0.324

169
```
Data = read.table(textConnection(Input),header=TRUE)

Paired t-test

t.test(Data$Typical,
 Data$Odd,
 paired=TRUE,
 conf.level=0.95)

 t = 4.0647, df = 15, p-value = 0.001017

 mean of the differences
 0.137125

Simple plot of differences

Difference = Data$Odd - Data$Typical

plot(Difference,
 pch = 16,
 ylab="Difference (Odd - Typical)"

abline(0,0, col="blue", lwd=2)
A simple plot of differences between one sample and the other. Points below the blue line indicate observations where Typical is greater than Odd, that is where \((Odd - Typical)\) is negative.

Simple 1-to-1 plot of values

```r
plot(Data$Typical, Data$Odd, 
    pch = 16, 
    xlab="Typical feathers", 
    ylab="Odd feathers")

abline(0,1, col="blue", lwd=2)
```

Plot of paired samples from a paired t-test. Circles below or to the right of the blue one-to-one line indicate observations with a higher value for Typical than for Odd.
Checking assumptions of the model

\[
\text{Difference} = \text{Data}^{\text{Odd}} - \text{Data}^{\text{Typical}}
\]

```r
hist(Difference,
    col="gray",
    main="Histogram of differences",
    xlab="Difference")
```

Histogram of differences of two populations from a paired t-test. Distribution of differences should be approximately normal. Bins with negative values indicate observations with a higher value for Typical than for Odd.

Graphing the results

```r
Data$\text{Difference} = Data^{\text{Odd}} - Data^{\text{Typical}}
```

```r
library(ggplot2)

ggplot(Data,
    aes(x = Bird,
        y = Difference)) +
    geom_bar(stat = "identity",
        fill = "grey50",
        colour = "black",
        width = 0.6) +
    scale_y_continuous(breaks = seq(-0.4, 0.1, 0.1),
        limits = c(-0.4, 0.1),
        expand = c(0, 0)) +
    #ggtitle("chart title") +
    labs(x = "Bird identification letter",
         y = "Difference in yellowness index (Typical - Odd)") +
    theme_bw() +
    theme(panel.grid.major.x = element_blank(),
```
Paired t-test, data in wide format, horseshoe crab example

```r
Input = ("Beach Year.2011 Year.2012
'Bennetts Pier' 35282 21814
'Big Stone' 359350 83500
'Broadkill' 45705 13290
'Cape Henlopen' 49005 30150
'Fortescue' 68978 125190
'Fowler' 8700 4620
'Gandys' 18780 88926
```

Note, if you use "2011" as a variable name, the read.table function will convert it to "X2011"
`data = read.table(textConnection(Input), header=TRUE)`

Paired t-test

```r
t.test(Data$Year.2011, Data$Year.2012, paired=TRUE, conf.level=0.95)
```

\[
t = 2.1119, \ df = 24, \ p-value = 0.04529
\]

Simple 1-to-1 plot of values

```r
plot(Data$Year.2011, Data$Year.2012, pch = 16, xlab="2011", ylab="2012")
```

```
abline(0,1, col="blue", lwd=2)
```
Plot of paired samples from a paired t-test. Circles below and to the right of the blue one-to-one line indicate observations with a higher value for 2011 than for 2012.

\[
\text{Difference} = \text{Data}\$\text{Year.2012} - \text{Data}\$\text{Year.2011}
\]

\begin{verbatim}
 hist(Difference,
 col="gray",
 main="Histogram of differences",
 xlab="Difference")
\end{verbatim}

Histogram of differences in two populations from paired t-test. Distribution of differences should be approximately normal.Bins with negative values indicate observations with a higher score for 2011 than for 2012.

\begin{verbatim}
#
\end{verbatim}

Paired t-test, data in long format
Paired t-test, long format data, Flicker feather example, p. 185

Input = ("Bird Feather Length
A Typical -0.255
B Typical -0.213
C Typical -0.19
D Typical -0.185
E Typical -0.045
F Typical -0.025
G Typical -0.015
H Typical 0.003
I Typical 0.015
J Typical 0.02
K Typical 0.023
L Typical 0.04
M Typical 0.04
N Typical 0.05
O Typical 0.055
P Typical 0.058
A Odd -0.324
B Odd -0.185
C Odd -0.299
D Odd -0.144
E Odd -0.027
F Odd -0.039
G Odd -0.264
H Odd -0.077
I Odd -0.017
J Odd -0.169
K Odd -0.096
L Odd -0.33
M Odd -0.346
N Odd -0.191
O Odd -0.128
P Odd -0.182")

Data = read.table(textConnection(Input),header=TRUE)

Note: data must be ordered so that the first observation of Group 1
is the same subject as the first observation of Group 2

t.test(Length ~ Feather,
data=Data,
paired=TRUE,
conf.level=0.95)

\[t = -4.0647, \text{ df } = 15, \text{ p-value } = 0.001017 \]

mean of the differences
\[-0.137125 \]
Permutation test for dependent samples

This permutation test is analogous to a paired t-test.

```r
### Paired two-sample permutation test, long format data
### Flicker feather example, p. 185
###
Data = read.table(textConnection(Input), header=TRUE)
library(coin)

independence_test(Length ~ Feather | Bird, data = Data)

Asymptotic General Independence Test
```
\[Z = -2.8959, \ p-value = 0.003781 \]

Power analysis

Power analysis for paired t-test

```r
library(pwr)
pwr.t.test(
  n = NULL, # Number of _pairs_ of observations
d = Cohen.d, # Difference in means to detect
sig.level = 0.05, # Type I probability
power = 0.90, # 1 minus Type II probability
type = "paired", # paired t-test
alternative = "two.sided")
```

Paired t test power calculation

\[n = 21.16434 \]

NOTE: \(n \) is number of *pairs*

Wilcoxon Signed-rank Test

Examples in Summary and Analysis of Extension Program Evaluation

SAEEPER: Two-sample Paired Rank-sum Test
SAEEPER: Sign Test for Two-sample Paired Data

Packages used in this chapter

The following commands will install these packages if they are not already installed:

```r
if(!require(BSDA)){install.packages("BSDA")}
```

When to use it

The poplar example is shown below in the “How to do the test” section.
Null hypothesis
How it works
Examples
Graphing the results
See the Handbook for information on these topics.

Similar tests
Paired t-test and permutation test are described in the Paired t-test chapter. The sign test is described below.

How to do the test
Wilcoxon signed-rank test example

```r
## wilcoxon signed-rank test example

Input = ("Clone        August  November
Balsam_Spire  8.1    11.2
Beaupre      10.0    16.3
Hazendans    16.5    15.3
Hoogvorst    13.6    15.6
Raspalje     9.5     10.5
Unal         8.3     15.5
Columbia_River 18.3   12.7
Fritzi_Pauley 13.3   11.1
Trichobel    7.9     19.9
Gaver        8.1     20.4
Gibecq       8.9     14.2
Primo        12.6    12.7
Wolterson    13.4    36.8
")

Data = read.table(textConnection(Input),header=TRUE)

wilcox.test(Data$August,
             Data$November,
             paired=TRUE)

  Wilcoxon signed rank test

  V = 16, p-value = 0.03979

  ### Matches "Signed Rank" p-value in SAS output

Simple 1-to-1 plot of values

    plot(Data$August, Data$November,
         pch = 16,
         xlab="August",
```
Wilcoxon Signed-rank Test

An R Companion for the Handbook of Biological Statistics

```r
ylab="November")

abline(0,1, col="blue", lwd=2)
```

Plot of paired samples from a Wilcoxon signed-rank test. Circles above and to the left of the blue one-to-one line indicate observations with a higher value for November than for August.

###

Sign test example

The following is an example of the two-sample dependent-samples sign test. The data are arranged as a data frame in which each row contains the values for both measurements being compared for each experimental unit. This is sometimes called “wide format” data. The `SIGN.test` function in the BSDA package is used. The option `md=0` indicates that the expected difference in the medians is 0 (null hypothesis). This function can also perform a one-sample sign test.

```r
### Two-sample sign test, poplar example, p. 189
###

Input = ("Clone          August  November
Balsam_Spire    8.1    11.2
Beaupre        10.0    16.3
Hazendans      16.5    15.3
Hoogvorst      13.6    15.6
Raspalje        9.5    10.5
Unal            8.3    15.5
Columbia_River  18.3   12.7
Fritzi_Pauley   13.3   11.1
Trichobel        7.9   19.9
Gaver            8.1   20.4
Gibecq           8.9   14.2
Primo           12.6   12.7
```
```
Wolterson 13.4 36.8
```

```R
Data = read.table(textConnection(Input),header=TRUE)

library(BSDA)

SIGN.test(x = Data$ August,
          y = Data$ November,
          md = 0,
          alternative = "two.sided",
          conf.level = 0.95)

Dependent-samples Sign-Test

S = 3, p-value = 0.09229

### Matches "Sign" p-value in SAS output

#   #   #
Correlation and Linear Regression

Introduction
The amphipod egg example is shown below in the "How to do the test" section.

When to use them
Correlation versus linear regression
Correlation and causation
Null hypothesis
Independent vs. dependent variables
How the test works
Assumptions
See the Handbook for information on these topics.

Examples
The species diversity example is shown below in the “How to do the test” section.

Graphing the results
Similar tests

How to do the test
Correlation and linear regression example

```r
Correlation and linear regression, species diversity example
pp. 207–208

Input = (
 Town State Latitude Species
'Bombay Hook' DE 39.217 128
'Cape Henlopen' DE 38.800 137
'Middletown' DE 39.467 108
'Milford' DE 38.958 118
'Rehoboth' DE 38.600 135
'Seahord-Nanticoke' DE 38.583 94
'Wilmington' DE 39.733 113
'Crisfield' MD 38.033 118
'Denton' MD 38.900 96
'Elkton' MD 39.533 98
'Lower Kent County' MD 39.133 121
'Ocean City' MD 38.317 152
'Salisbury' MD 38.333 108
'S Dorchester County' MD 38.367 118
```
Correlation and Linear Regression

Correlation can be performed with the `cor.test` function in the native `stats` package. It can perform Pearson, Kendall, and Spearman correlation procedures. Methods for multiple correlation of several variables simultaneously are discussed in the Multiple regression chapter.

Pearson correlation

Pearson correlation is the most common form of correlation. It is a parametric test, and assumes that the data are linearly related and that the residuals are normally distributed.

```
cor.test(~ Species + Latitude,
data=Data,
method = "pearson",
conf.level = 0.95)
```

Pearson's product-moment correlation

```
t = -2.0225, df = 15, p-value = 0.06134
```
Kendall correlation
Kendall rank correlation is a non-parametric test that does not assume a distribution of the data or that the data are linearly related. It ranks the data to determine the degree of correlation.

```r
cor.test(~ Species + Latitude,
data=Data,
method = "kendall",
continuity = FALSE,
conf.level = 0.95)
```

Kendall's rank correlation tau

\[ z = -1.3234, \text{ p-value} = 0.1857 \]

\[ \tau = -0.2388326 \]

Spearman correlation
Spearman rank correlation is a non-parametric test that does not assume a distribution of the data or that the data are linearly related. It ranks the data to determine the degree of correlation, and is appropriate for ordinal measurements.

```r
cor.test(~ Species + Latitude,
data=Data,
method = "spearman",
continuity = FALSE,
conf.level = 0.95)
```

Spearman's rank correlation rho

\[ S = 1111.908, \text{ p-value} = 0.1526 \]

\[ \rho = -0.3626323 \]

Linear regression
Linear regression can be performed with the `lm` function in the native `stats` package. A robust regression can be performed with the `lmrob` function in the `robustbase` package.

```r
model = lm(Species ~ Latitude,
data = Data)

summary(model) # shows parameter estimates,
 # p-value for model, r-square
```

| Estimate     | Std. Error | t value | Pr(>|t|) |
|--------------|------------|---------|----------|
| (Intercept)  | 585.145    | 230.024 | 2.544    | 0.0225 * |
| Latitude     | -12.039    | 5.953   | -2.022   | 0.0613 . |
Multiple R-squared: 0.2143, Adjusted R-squared: 0.1619
F-statistic: 4.09 on 1 and 15 DF, p-value: 0.06134

library(car)

Anova(model, type="II")  # shows p-value for effects in model

Plot linear regression

int = model$coefficient["(Intercept)"]
slope = model$coefficient["Latitude"]

plot(Species ~ Latitude,
data = Data,
pch=16,
xlab = "Latitude",
ylab = "Species")

abline(int, slope,
  lty=1, lwd=2, col="blue")  # style and color of line

Checking assumptions of the model

hist(residuals(model),
col="darkgray")
A histogram of residuals from a linear model. The distribution of these residuals should be approximately normal.

```
plot(fitted(model),
 residuals(model))
```

A plot of residuals vs. predicted values. The residuals should be unbiased and homoscedastic. For an illustration of these properties, see this diagram by Steve Jost at DePaul University: condor.depaul.edu/sjost/it223/documents/resid-plots.gif.

```r
additional model checking plots with: plot(model)
alternative: library(FSA); residPlot(model)
```
Robust regression

The \texttt{lmrob} function in the \texttt{robustbase} package produces a linear regression which is not sensitive to outliers in the response variable. It uses MM-estimation.

\begin{verbatim}
library(robustbase)

model = lmrob(Species ~ Latitude, data = Data)

summary(model) # shows parameter estimates, r-square

   Estimate Std. Error   t value    Pr(>|t|)  
(Intercept)   568.830     230.203     2.471   0.0259 *  
Latitude      -11.619      5.912     -1.966   0.0681 .

Multiple R-squared:  0.1846,  Adjusted R-squared:  0.1302

model.null = lmrob(Species ~ 1, data = Data)

anova(model, model.null) # shows p-value for model

  pseudoDf Test.Stat Df  Pr(>chisq)  
1           15          
2           16  3.8634  1   0.04935 *

Plot the model

int = model$coefficient["(Intercept)"]
slope = model$coefficient["Latitude"]

plot(Species ~ Latitude,
     data = Data,
     pch=16,
     xlab = "Latitude",
     ylab = "Species")

abline(int, slope,
       lty=1, lwd=2, col="blue") # style and color of line
\end{verbatim}
Linear regression example

### Linear regression, amphipod eggs example
### pp. 191–193
###

```
Input = c(
 Weight Eggs
 5.38 29
 7.36 23
 6.13 22
 4.75 20
 8.10 25
 8.62 25
 6.30 17
 7.44 24
 7.26 20
 7.17 27
 7.78 24
 6.23 21
 5.42 22
 7.87 22
 5.25 23
 7.37 35
 8.01 27
 4.92 23
 7.03 25
 6.45 24
 5.06 19
 6.72 21
 7.00 20
 9.39 33
)
```
```r
6.49 17
6.34 21
6.16 25
5.74 22
"

Data = read.table(textConnection(Input),header=TRUE)

model = lm(Eggs ~ Weight,
data = Data)

summary(model) # shows parameter estimates,
 # p-value for model, r-square

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 12.6890 4.2009 3.021 0.0056 **
Weight 1.6017 0.6176 2.593 0.0154 *

Multiple R-squared: 0.2055, Adjusted R-squared: 0.175
F-statistic: 6.726 on 1 and 26 DF, p-value: 0.0154

Neither the r-squared nor the p-value agrees with what is reported
in the Handbook.

library(car)

Anova(model, type="II") # shows p-value for effects in model

 Sum Sq Df F value Pr(>F)
Weight 93.89 1 6.7258 0.0154 *
Residuals 362.96 26

#

Power analysis

Power analysis for correlation

Power analysis, correlation, p. 208

pwr.r.test(n = NULL,
r = 0.500,
sig.level = 0.05,
power = 0.80,
alternative = "two.sided")

approximate correlation power calculation (arctangh transformation)

n = 28.87376 # answer is somewhat different than in Handbook

#
```

189
Spearman Rank Correlation

When to use it
Null hypothesis
Assumption
How the test works
See the Handbook for information on these topics.

Example

Example of Spearman rank correlation

```r
Input = ("Volume Pitch
1760 529
2040 566
2440 473
2550 461
2730 465
2740 532
3010 484
3080 527
3370 488
3740 485
4910 478
5090 434
5090 468
5380 449
5850 425
6730 389
6990 421
7960 416")

Data = read.table(textConnection(Input),header=TRUE)

cor.test(~ Pitch + Volume,
 data=Data,
 method = "spearman",
 continuity = FALSE,
 conf.level = 0.95)

Spearman's rank correlation rho
```
Simple plot of the data

```r
plot(Pitch ~ Volume,
data=Data,
pch=16)
```

Graphing the results
See the *Handbook* for information on this topic.

How to do the test

*Example of Spearman rank correlation*

```r
#
Input = ("Town State Latitude Species
'Bombay Hook' DE 39.217 128
'Cape Henlopen' DE 38.800 137
'Middletown' DE 39.467 108
'Milford' DE 38.958 118
'Rehoboth' DE 38.600 135
'Seaford-Nanticoke' DE 38.583 94
'Wilmington' DE 39.733 113
'Crisfield' MD 38.033 118
```

\[ S = 1708.382, \text{ p-value} = 0.0002302 \]

sample estimates:
\[
\rho = -0.7630357
\]
Data = read.table(textConnection(Input),header=TRUE)

cor.test( ~ Species + Latitude, 
    data=Data, 
    method = "spearman", 
    continuity = FALSE, 
    conf.level = 0.95)

Spearman's rank correlation rho

S = 1111.908, p-value = 0.1526

rho
-0.3626323

Simple plot of the data

plot(Species ~ Latitude, 
     data=Data, 
     pch=16)
Curvilinear Regression

When to use it
Null hypotheses
Assumptions
How the test works
Examples
Graphing the results
Similar tests
See the Handbook for information on these topics.

How to do the test
This chapter will fit models to curvilinear data using three methods: 1) Polynomial regression; 2) B-spline regression with polynomial splines; and 3) Nonlinear regression with the nls function. In this example, each of these three will find essentially the same best-fit curve with very similar p-values and R-squared values.

Polynomial regression
Polynomial regression is really just a special case of multiple regression, which is covered in the Multiple regression chapter. In this example we will fit a few models, as the Handbook does, and then compare the models with the extra sum of squares test, the Akaike information criterion (AIC), and the adjusted R-squared as model fit criteria.

For a linear model (lm), the adjusted R-squared is included with the output of the summary(model) statement. The AIC is produced with its own function call, AIC(model). The extra sum of squares test is conducted with the anova function applied to two models.

For AIC, smaller is better. For adjusted R-squared, larger is better. A non-significant p-value for the extra sum of squares test comparing model a to model b indicates that the model with the extra terms does not significantly reduce the error sum of squares over the reduced model. Which is to say, a non-significant p-value suggests the model with the additional terms is not better than the reduced model.

```r

Polynomial regression, turtle carapace example
pp. 220–221

Input = ("Length Clutch
284 3
290 2
290 7
290 7
298 11
299 12
302 10
```

193
Data = read.table(textConnection(Input),header=TRUE)

### Change Length from integer to numeric variable
###   otherwise, we will get an integer overflow error on big numbers
Data$Length = as.numeric(Data$Length)

### Create quadratic, cubic, quartic variables
library(dplyr)
Data =
  mutate(Data,
    Length2 = Length*Length,
    Length3 = Length*Length*Length,
    Length4 = Length*Length*Length*Length)

library(FSA)
headtail(Data)

Define the models to compare

cmodel.1 = lm (Clutch ~ Length,             data=Data)
cmodel.2 = lm (Clutch ~ Length + Length2,   data=Data)
cmodel.3 = lm (Clutch ~ Length + Length2 + Length3, data=Data)
cmodel.4 = lm (Clutch ~ Length + Length2 + Length3 + Length4, data=Data)

Generate the model selection criteria statistics for these models
### Model 1

**summary(model.1)**

Coefficients:

|                | Estimate | Std. Error | t value | Pr(>|t|) |
|----------------|----------|------------|---------|----------|
| (Intercept)    | -0.4353  | 17.3499    | -0.03   | 0.98     |
| Length         | 0.0276   | 0.0563     | 0.49    | 0.63     |

Multiple R-squared: 0.0148, Adjusted R-squared: -0.0468
F-statistic: 0.24 on 1 and 16 DF, p-value: 0.631

**AIC(model.1)**

[1] 99.133

### Model 2

**summary(model.2)**

Coefficients:

|                | Estimate  | Std. Error | t value | Pr(>|t|) |
|----------------|-----------|------------|---------|----------|
| (Intercept)    | -9.00e+02 | 2.70e+02   | -3.33   | 0.0046 **|
| Length         | 5.86e+00  | 1.75e+00   | 3.35    | 0.0044 **|
| Length2        | -9.42e-03 | 2.83e-03   | -3.33   | 0.0045 **|

Multiple R-squared: 0.434, Adjusted R-squared: 0.358
F-statistic: 5.75 on 2 and 15 DF, p-value: 0.014

**AIC(model.2)**

[1] 91.16157

**anova(model.1, model.2)**

Analysis of Variance Table

<table>
<thead>
<tr>
<th>Res.Df</th>
<th>RSS</th>
<th>Df</th>
<th>Sum of Sq</th>
<th>F</th>
<th>Pr(&gt;F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>186.15</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>106.97</td>
<td>15</td>
<td>79.178</td>
<td>11.102</td>
<td>0.00455 **</td>
</tr>
</tbody>
</table>

### Model selection criteria for four polynomial models. Model 2 has the lowest AIC, suggesting it is the best model from this list for these data. Likewise model 2 shows the largest adjusted R-squared. Finally, the extra SS test shows model 2 to be better than model 1, but that model 3 is not better than model 2. All this evidence indicates selecting model 2.

<table>
<thead>
<tr>
<th>Model</th>
<th>AIC</th>
<th>Adjusted R-squared</th>
<th>p-value for extra SS from previous model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Compare models with `compareLM` and `anova`

This process can be automated somewhat by using my `compareLM` function and by passing multiple models to the `anova` function. Any of AIC, AICc, or BIC can be minimized to select the best model. If you have no preference, I might recommend using AICc.

```
model.1 = lm (Clutch ~ Length, data=Data)
model.2 = lm (Clutch ~ Length + Length2, data=Data)
model.3 = lm (Clutch ~ Length + Length2 + Length3, data=Data)
model.4 = lm (Clutch ~ Length + Length2 + Length3 + Length4, data=Data)

library(rcompanion)

compareLM(model.1, model.2, model.3, model.4)
```

```
$Fit.criteria
1 2 16 99.13 100.80 101.80 0.01478 -0.0468 0.63080 0.9559 0.5253
2 3 15 91.16 94.24 94.72 0.43380 0.3583 0.01403 0.9605 0.6116
3 4 14 92.68 97.68 97.14 0.44860 0.3305 0.03496 0.9762 0.9025
4 5 13 94.37 102.00 99.71 0.45810 0.2914 0.07413 0.9797 0.9474

anova(model.1, model.2, model.3, model.4)
```

```
Res.Df RSS Df Sum of Sq F Pr(>F)
1 16 186.15
2 15 106.97 1 79.178 10.0535 0.007372 **
3 14 104.18 1 2.797 0.3551 0.561448
4 13 102.38 1 1.792 0.2276 0.641254
```

Investigate the final model

```
model.final = lm (Clutch ~ Length + Length2, data=Data)

summary(model.final)
```

```
Shows coefficients, # overall p-value for model, R-squared
```

```
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -9.00e+02 2.70e+02 -3.33 0.0046 **
 Length 5.86e+00 1.75e+00 3.35 0.0044 **
Length2 -9.42e-03 2.83e-03 -3.33 0.0045 **

Multiple R-squared: 0.434, Adjusted R-squared: 0.358
F-statistic: 5.75 on 2 and 15 DF, p-value: 0.014
library(car)

Anova(model.final, type="II") # Shows p-values for individual terms

Anova Table (Type II tests)

Response: Clutch

<table>
<thead>
<tr>
<th></th>
<th>Sum Sq</th>
<th>Df</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>79.9</td>
<td>1</td>
<td>11.2</td>
<td>0.0044 *</td>
</tr>
<tr>
<td>Length2</td>
<td>79.2</td>
<td>1</td>
<td>11.1</td>
<td>0.0045 *</td>
</tr>
<tr>
<td>Residuals</td>
<td>107.0</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Simple plot of model

plot(Clutch ~ Length,
 data = Data,
 pch=16,
 xlab = "Carapace length",
 ylab = "Clutch")

i = seq(min(Data$Length), max(Data$Length), len=100) # x-values for line
prey = predict(model.final,
 data.frame(Length=i, Length2=i*i)) # fitted values
lines(i, prey, # spline curve
 lty=1, lwd=2, col="blue") # style and color

Checking assumptions of the model

hist(residuals(model.final),
 col="darkgray")
A histogram of residuals from a linear model. The distribution of these residuals should be approximately normal.

```
plot(fitted(model.final),
     residuals(model.final))
```

A plot of residuals vs. predicted values. The residuals should be unbiased and homoscedastic. For an illustration of these properties, see this diagram by Steve Jost at DePaul University: condor.depaul.edu/sjost/it223/documents/resid-plots.gif.

```r
### additional model checking plots with: plot(model.final)
```

#
Curvilinear Regression

B-spline regression with polynomial splines

B-spline regression uses smaller segments of linear or polynomial regression which are stitched together to make a single model. It is useful to fit a curve to data when you don't have a theoretical model to use (e.g. neither linear, nor polynomial, nor nonlinear). It does not assume a linear relationship between the variables, but the residuals should still be normal and independent. The model may be influenced by outliers.

```R
### B-spline regression, turtle carapace example
### pp. 220–221
###--------------------------------------------------------------
Input = ("Length  Clutch
284     3
290     2
290     7
290     7
298     11
299     12
302     10
306     8
306     8
309     9
310     10
311     13
317     7
317     9
320     6
323     13
334     2
334     8"
)

Data = read.table(textConnection(Input),header=TRUE)

library(splines)

model = lm(Clutch ~ bs(Length,
    knots = 5,       # How many internal segment nodes?
    degree = 2),    # 1=local linear fits, 2=quadratic
    data = Data)

summary(model)   # Display p-value and R-squared

Residual standard error: 2.671 on 15 degrees of freedom
Multiple R-squared:  0.4338,  Adjusted R-squared:  0.3583
F-statistic: 5.747 on 2 and 15 DF,  p-value: 0.01403

```

Simple plot of model

```R
plot(Clutch ~ Length,
    data = Data,
    
```
Checking assumptions of the model

```r
hist(residuals(model),
     col="darkgray")
```

A histogram of residuals from a linear model. The distribution of these residuals should be approximately normal.
A plot of residuals vs. predicted values. The residuals should be unbiased and homoscedastic. For an illustration of these properties, see this diagram by Steve Jost at DePaul University: condor.depaul.edu/sjost/it223/documents/resid-plots.gif.

additional model checking plots with: plot(model)

Nonlinear regression

Nonlinear regression can fit various nonlinear models to a data set. These model might include exponential models, logarithmic models, decay curves, or growth curves. The `nls` function works by an iterative process, starting with user supplied estimates for the parameters in the model, and finding successively better parameter estimates until certain convergence criteria are met.

In this example, we assume that we want to fit a parabola to our data, but we’ll use the vertex form of the equation \(y = a(x-h) + k \). This form is handy because the point \((h, k)\) indicates the vertex of the parabola.

Note in the formula in the `nls` call below, that there are variables from our data (Clutch and Length), and parameters we want to estimate (Lcenter, Cmax, and a).

There’s no set process for choosing starting estimates for the parameters. Often, the parameters will be meaningful. For example, here, Lcenter is the x-coordinate of the vertex and Cmax is the y-coordinate of the vertex. So we can guess at reasonable values for these. The parameter \(a\) would be difficult to guess at, though we know it should be negative because the parabola opens downward.

Because `nls` uses an iterative process based on initial estimates of the parameters, it fails to find a solution if the estimates are too far off, or it may return a set of parameter estimates that don’t fit the data well. It is important to plot the solution and make sure it is reasonable. I have seen `nls`
have difficulty with models that have more than three parameters. The package nlmrt uses a
different process for determining the iterations, and may be better to fit difficult models.

If you wish to have an overall p-value for the model and a pseudo-R-squared for the model, the
model will need to be compared with a null model. Technically for this to be valid, the null model
must be nested within the fitted model. That means that the null model is a special case of the
fitted model. In our example, if we were to force \(a\) to be zero, that would leave a model \(\text{Clutch} \sim \text{constant}\), where \text{constant} would be a parameter that estimates the mean of the \text{Clutch}\ variable.
Many theoretical models do not have this property; that is, they don’t have a constant or linear
term. They are therefore considered nonlinear models. In these cases, \text{nls}\ can still be used to fit
the model, but the extra steps determining the model's overall p-value and pseudo-R-squared are
technically not valid. In these cases, models could be compared with the Akaike information
criterion (AIC).

The p-value for the model, relative to the null model, is determined with the extra SS (F) test
\text{(anova function)} or likelihood ratio test \text{(lrtest in the package lmtest)}.

There are various pseudo-R-squared values that have been developed for models without r-
squared defined. My function \text{nagelkerke} calculates the McFadden, the Cox and Snell, and the
Nagelkerke pseudo-R-squared. For \text{nls}\ models, a null model must be explicitly defined and
passed to the function. The Nagelkerke is a modification of the Cox and Snell so that it has a
maximum of 1. I find the Nagelkerke to usually be satisfactory for \text{nls, lme, and gls}\ models. As a
technical note, for \text{gls}\ and \text{lme}\ models, my function uses the likelihood for the model with ML
fitting (REML = FALSE).

Pseudo-R-squared values are not directly comparable to multiple R-squared values, though in
the examples in this chapter, the Nagelkerke is reasonably close to the multiple R-squared for
the quadratic parabola model.

```r
### ---------------------------------------------
### Nonlinear regression, turtle carapace example
### pp. 220–221
### ---------------------------------------------

Input = ("Length   Clutch
284     3
290     2
290     7
290     7
298     11
299     12
302     10
306     8
306     8
309     9
310     10
311     13
317     7
317     9"
```
Data = read.table(textConnection(Input), header=TRUE)

model = nls(Clutch ~ a * (Length - Lcenter)^2 + Cmax,
 data = Data,
 start = c(Lcenter = 310,
 Cmax = 12,
 a = -1),
 trace = FALSE,
 nls.control(maxiter = 1000)
)

summary(model)

Determine overall p-value and pseudo-R-squared

model.null = nls(Clutch ~ I,
 data = Data,
 start = c(I = 8),
 trace = FALSE)

anova(model, model.null)

library(rcompanion)
nagelkerke(fit = model,
 null = model.null)

$Pseudo.R.squared.for.model.vs.null
 Pseudo.R.squared
 McFadden 0.109631
 Cox and Snell (ML) 0.433836
 Nagelkerke (Cragg and Uhler) 0.436269

Determine confidence intervals for parameters
library(nlstools)

confint2(model,
 level = 0.95,
 method = "asymptotic")

 2.5 % 97.5 %
Lcenter 305.6563154 315.800988774
Cmax 8.2180886 11.899483768
a -0.0154538 -0.003395949

Boot=nlsBoot(model)

summary(Boot)

Bootstrap statistics
 Estimate Std. error
Lcenter 311.07998936 2.872859816
Cmax 10.13306941 0.764154661
a -0.00938236 0.002599385

Median of bootstrap estimates and percentile confidence intervals
 Median 2.5% 97.5%
Lcenter 310.770796703 306.78718266 316.153528168
Cmax 10.157560932 8.58974408 11.583719723
a -0.009402318 -0.01432593 -0.004265714

Simple plot of model

plot(Clutch ~ Length,
 data = Data,
 pch=16,
 xlab = "Carapace length",
 ylab = "Clutch")

i = seq(min(Data$Length), max(Data$Length), len=100) # x-values for line
predy = predict(model, data.frame(Length=i)) # fitted values
lines(i, predy,
 lty=1, lwd=2, col="blue") # spline curve

204
Checking assumptions of the model

```r
hist(residuals(model),
   col="darkgray")
```

A histogram of residuals from a linear model. The distribution of these residuals should be approximately normal.

```r
plot(fitted(model),
     residuals(model))
```
A plot of residuals vs. predicted values. The residuals should be unbiased and homoscedastic. For an illustration of these properties, see this diagram by Steve Jost at DePaul University: condor.depaul.edu/sjost/it223/documents/resid-plots.gif.

#

Analysis of Covariance

When to use it
The cricket example is shown in the “How to do the test” section.

Null hypotheses
Assumptions
How the test works
Examples
Graphing the results
Similar tests
See the Handbook for information on these topics.

How to do the test

Analysis of covariance example with two categories and type II sum of squares

This example uses type II sum of squares, but otherwise follows the example in the Handbook. The parameter estimates are calculated differently in R, so the calculation of the intercepts of the lines is slightly different.

```r
Input = ("Species  Temp  Pulse
Species Temp Pulse
```

206
An Analysis of Covariance

```
ex       20.8   67.9
ex       20.8   65.1
ex       24     77.3
ex       24     78.7
ex       24     79.4
ex       24     80.4
ex       26.2   85.8
ex       26.2   86.6
ex       26.2   87.5
ex       26.2   89.1
ex       28.4   98.6
ex       29     100.8
ex       30.4   99.3
ex       30.4   101.7
niv      17.2   44.3
niv      18.3   47.2
niv      18.3   47.6
niv      18.3   49.6
niv      18.9   50.3
niv      18.9   51.8
niv      20.4   60
niv      21     58.5
niv      21     58.9
niv      22.1   60.7
niv      23.5   69.8
niv      24.2   70.9
niv      25.9   76.2
niv      26.5   76.1
niv      26.5   77
niv      26.5   77.7
niv      28.6   84.7
```

Data = read.table(textConnection(Input),header=TRUE)

Simple plot

```
plot(x = Data$Temp,
y = Data$Pulse,
col = Data$Species,
pch = 16,
xlab = "Temperature",
ylab = "Pulse")

legend('bottomright',
legend = levels(Data$Species),
col = 1:2,
cex = 1,
pch = 16)
```

Analysis of covariance
options(contrasts = c("contr.treatment", "contr.poly"))

These are the default contrasts in R

model.1 = lm (Pulse ~ Temp + Species + Temp:Species, data = Data)

library(car)

Anova(model.1, type="II")

Anova Table (Type II tests)

<table>
<thead>
<tr>
<th></th>
<th>Sum Sq</th>
<th>Df</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp</td>
<td>4376.1</td>
<td>1</td>
<td>1388.839</td>
<td><2.2e-16 ***</td>
</tr>
<tr>
<td>Species</td>
<td>598.0</td>
<td>1</td>
<td>189.789</td>
<td>9.907e-14 ***</td>
</tr>
<tr>
<td>Temp:Species</td>
<td>4.3</td>
<td>1</td>
<td>1.357</td>
<td>0.2542</td>
</tr>
</tbody>
</table>

Interaction is not significant, so the slope across groups is not different.

model.2 = lm (Pulse ~ Temp + Species, data = Data)

library(car)

Anova(model.2, type="II")

Anova Table (Type II tests)

<table>
<thead>
<tr>
<th></th>
<th>Sum Sq</th>
<th>Df</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp</td>
<td>4376.1</td>
<td>1</td>
<td>1371.4</td>
<td><2.2e-16 ***</td>
</tr>
<tr>
<td>Species</td>
<td>598.0</td>
<td>1</td>
<td>187.4</td>
<td>6.272e-14 ***</td>
</tr>
</tbody>
</table>

The category variable (Species) is significant, so the intercepts among groups are different.

summary(model.2)

Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|-----------------|----------|------------|---------|---------|
| (Intercept) | -7.21091 | 2.55094 | -2.827 | 0.00858 ** |
| Temp | 3.60275 | 0.09729 | 37.032 | <2e-16 *** |
| Speciesniv | -10.06529| 0.73526 | -13.689 | 6.27e-14 *** |

Note that these estimates are different than in the Handbook, but the calculated results will be identical.

The slope estimate is the same.

The intercept for species 1 (ex) is (intercept).

The intercept for species 2 (niv) is (intercept) + Speciesniv.

This is determined from the contrast coding of the Species variable shown below, and the fact that Speciesniv is shown in
coefficient table above.

```
contrasts(Data$Species)

  niv  ex
  1   0

Simple plot with fitted lines

I.nought = -7.21091
I1 = I.nought + 0
I2 = I.nought + -10.06529
B   = 3.60275

plot(x = Data$Temp,
y = Data$Pulse,
col = Data$Species,
pch = 16,
xlab = "Temperature",
ylab = "Pulse")

legend('bottomright',
       legend = levels(Data$Species),
col = 1:2,
cex = 1,
pch = 16)

abline(I1, B, lty=1, lwd=2, col = 1)

abline(I2, B, lty=1, lwd=2, col = 2)
```
p-value and R-squared of combined model

```
summary(model.2)

Multiple R-squared: 0.9896, Adjusted R-squared: 0.9888
F-statistic: 1331 on 2 and 28 DF,  p-value: < 2.2e-16
```

Checking assumptions of the model

```
hist(residuals(model.2),
     col="darkgray")
```
A histogram of residuals from a linear model. The distribution of these residuals should be approximately normal.

```r
plot(fitted(model.2), residuals(model.2))
```

A plot of residuals vs. predicted values. The residuals should be unbiased and homoscedastic. For an illustration of these properties, see this diagram by Steve Jost at DePaul University: condor.depaul.edu/sjost/it223/documents/resid-plots.gif.

```r
### additional model checking plots with: plot(model.2) 
### alternative: library(FSA); residPlot(model.2)
```

Analysis of covariance example with three categories and type II sum of squares

This example uses type II sum of squares, and considers a case with three groups.

```r
Input = ("Species Temp Pulse
ex 20.8 67.9
ex 20.8 65.1
ex 24 77.3
ex 24 78.7
ex 24 79.4
ex 24 80.4
ex 26.2 85.8
ex 26.2 86.6
ex 26.2 87.5
ex 26.2 89.1
ex 28.4 98.6"
```
ex 29 100.8
ex 30.4 99.3
ex 30.4 101.7
niv 17.2 44.3
niv 18.3 47.2
niv 18.3 47.6
niv 18.3 49.6
niv 18.9 50.3
niv 18.9 51.8
niv 20.4 60
niv 21 58.5
niv 21 58.9
niv 22.1 60.7
niv 23.5 69.8
niv 24.2 70.9
niv 25.9 76.2
niv 26.5 76.1
niv 26.5 77
niv 26.5 77.7
niv 28.6 84.7
fake 17.2 74.3
fake 18.3 77.2
fake 18.3 77.6
fake 18.3 79.6
fake 18.9 80.3
fake 18.9 81.8
fake 20.4 90
fake 21 88.5
fake 21 88.9
fake 22.1 90.7
fake 23.5 99.8
fake 24.2 100.9
fake 25.9 106.2
fake 26.5 106.1
fake 26.5 107
fake 26.5 107.7
fake 28.6 114.7
")

Data = read.table(textConnection(Input),header=TRUE)

Simple plot

plot(x = Data$Temp,
y = Data$Pulse,
col = Data$Species,
pch = 16,
 xlab = "Temperature",
 ylab = "Pulse")

legend('bottomright',
legend = levels(Data$Species),
col = 1:3,
Analysis of covariance

options(contrasts = c("contr.treatment", "contr.poly"))

These are the default contrasts in R

model.1 = lm (Pulse ~ Temp + Species + Temp:Species, data = Data)

library(car)

Anova(model.1, type="II")

<table>
<thead>
<tr>
<th>Sum Sq</th>
<th>Df</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp</td>
<td>7026.0</td>
<td>1</td>
<td>2452.4187</td>
</tr>
<tr>
<td>Species</td>
<td>7835.7</td>
<td>2</td>
<td>1367.5377</td>
</tr>
<tr>
<td>Temp:Species</td>
<td>5.2</td>
<td>2</td>
<td>0.9126</td>
</tr>
</tbody>
</table>

Interaction is not significant, so the slope among groups is not different.

model.2 = lm (Pulse ~ Temp + Species, data = Data)

library(car)

Anova(model.2, type="II")

<table>
<thead>
<tr>
<th>Sum Sq</th>
<th>Df</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp</td>
<td>7026.0</td>
<td>1</td>
<td>2462.2</td>
</tr>
<tr>
<td>Species</td>
<td>7835.7</td>
<td>2</td>
<td>1373.0</td>
</tr>
<tr>
<td>Residuals</td>
<td>125.6</td>
<td>44</td>
<td></td>
</tr>
</tbody>
</table>

The category variable (Species) is significant, so the intercepts among groups are different

summary(model.2)

Coefficients:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|---------|
| (Intercept) | -6.35729 | 1.90713 | -3.333 | 0.00175 ** |
| Temp | 3.56961 | 0.07194 | 49.621 | < 2e-16 *** |
| Speciesfake | 19.81429 | 0.66333 | 29.871 | < 2e-16 *** |
| Speciesniv | -10.18571 | 0.66333 | -15.355 | < 2e-16 *** |

The slope estimate is the Temp coefficient.
The intercept for species 1 (ex) is (intercept).
The intercept for species 2 (fake) is (intercept) + Speciesfake.
The intercept for species 3 (niv) is (intercept) + Speciesniv.
This is determined from the contrast coding of the Species
variable shown below.

```r
contrasts(Data$Species)

  fake  niv
  ex    0   0
  fake  1   0
  niv   0   1
```

Simple plot with fitted lines

```r
I.nought = -6.35729
I1 = I.nought + 0
I2 = I.nought + 19.81429
I3 = I.nought - 10.18571
B = 3.56961

plot(x = Data$Temp,  
     y = Data$Pulse,  
     col = Data$Species,  
     pch = 16,  
     xlab = "Temperature",  
     ylab = "Pulse")

legend('bottomright',  
       legend = levels(Data$Species),  
       col = 1:3,  
       cex = 1,  
       pch = 16)

abline(I1, B,  
        lty=1, lwd=2, col = 1)

abline(I2, B,  
        lty=1, lwd=2, col = 2)

abline(I3, B,  
        lty=1, lwd=2, col = 3)
```
p-value and R-squared of combined model

```r
summary(model.2)
```

Multiple R-squared: 0.9919, Adjusted R-squared: 0.9913
F-statistic: 1791 on 3 and 44 DF, p-value: < 2.2e-16

Checking assumptions of the model

```r
hist(residuals(model.2),  
    col="darkgray")
```

Histogram of residuals(model.2)
A histogram of residuals from a linear model. The distribution of these residuals should be approximately normal.

\[\text{plot(fitted(model.2), residuals(model.2))} \]

A plot of residuals vs. predicted values. The residuals should be unbiased and homoscedastic. For an illustration of these properties, see this diagram by Steve Jost at DePaul University: condor.depaul.edu/sjost/it223/documents/resid-plots.gif.

additional model checking plots with: plot(model.2)
alternative: library(FSA); residPlot(model.2)

Power analysis
See the *Handbook* for information on this topic.

Multiple Regression

When to use it
- Null hypothesis
- How it works
- Using nominal variables in a multiple regression
- Selecting variables in multiple regression

Assumptions
See the *Handbook* for information on these topics.

Example
The Maryland Biological Stream Survey example is shown in the “How to do the multiple regression” section.

Graphing the results
Similar tests
See the Handbook for information on these topics.

How to do multiple regression

Multiple correlation
Whenever you have a dataset with multiple numeric variables, it is a good idea to look at the correlations among these variables. One reason is that if you have a dependent variable, you can easily see which independent variables correlate with that dependent variable. A second reason is that if you will be constructing a multiple regression model, adding an independent variable that is strongly correlated with an independent variable already in the model is unlikely to improve the model much, and you may have a good reason to chose one variable over another.

Finally, it is worthwhile to look at the distribution of the numeric variables. If the distributions differ greatly, using Kendall or Spearman correlations may be more appropriate. Also, if independent variables differ in distribution from the dependent variable, the independent variables may need to be transformed. In this example, Longnose, Acreage, Maxdepth, NO3, and SO4 are relatively log-normally distributed, while DO2 and Temp are relatively normal in distribution. It may be advisable in this case to transform these variable so that they all have similar distributions (not shown here).

With the corr.test function in the psych package, the “Correlation matrix” shows r-values and the “Probability values” table shows p-values. The PerformanceAnalytics plot shows r-values, with asterisks indicating significance, as well as a histogram of the individual variables. Either of these indicates that Longnose is significantly correlated with Acreage, Maxdepth, and NO3.
Data = read.table(textConnection(Input),header=TRUE)

Create a new data frame with only the numeric variables.
This is required for corr.test and chart.Correlation

```r
### Multiple Regression Analysis
```
library(dplyr)

Data.num =
 select(Data,
 Longnose,
 Acerage,
 Do2,
 Maxdepth,
 NO3,
 SO4,
 Temp)

library(FSA)

headtail(Data.num)

library(psych)

corr.test(Data.num,
 use = "pairwise",
 method = "pearson",
 adjust = "none",
 # Can adjust p-values; see ?p.adjust for options
 alpha = .05)

Correlation matrix

<table>
<thead>
<tr>
<th>Longnose</th>
<th>Acerage</th>
<th>Do2</th>
<th>Maxdepth</th>
<th>NO3</th>
<th>SO4</th>
<th>Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longnose</td>
<td>1.00</td>
<td>0.35</td>
<td>0.14</td>
<td>0.30</td>
<td>0.31</td>
<td>-0.02</td>
</tr>
<tr>
<td>Acerage</td>
<td>0.35</td>
<td>1.00</td>
<td>-0.02</td>
<td>0.26</td>
<td>-0.10</td>
<td>0.05</td>
</tr>
<tr>
<td>Do2</td>
<td>0.14</td>
<td>-0.02</td>
<td>1.00</td>
<td>-0.06</td>
<td>0.27</td>
<td>-0.07</td>
</tr>
<tr>
<td>Maxdepth</td>
<td>0.30</td>
<td>-0.02</td>
<td>1.00</td>
<td>0.00</td>
<td>0.04</td>
<td>-0.05</td>
</tr>
<tr>
<td>NO3</td>
<td>0.31</td>
<td>-0.10</td>
<td>0.27</td>
<td>0.04</td>
<td>1.00</td>
<td>-0.09</td>
</tr>
<tr>
<td>SO4</td>
<td>-0.02</td>
<td>0.05</td>
<td>0.07</td>
<td>-0.05</td>
<td>0.09</td>
<td>1.00</td>
</tr>
<tr>
<td>Temp</td>
<td>0.14</td>
<td>0.00</td>
<td>-0.32</td>
<td>0.00</td>
<td>0.00</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Sample Size

Probability values (Entries above the diagonal are adjusted for multiple tests.)

<table>
<thead>
<tr>
<th>Longnose</th>
<th>Acerage</th>
<th>Do2</th>
<th>Maxdepth</th>
<th>NO3</th>
<th>SO4</th>
<th>Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longnose</td>
<td>0.00</td>
<td>0.00</td>
<td>0.27</td>
<td>0.01</td>
<td>0.01</td>
<td>0.89</td>
</tr>
<tr>
<td>Acerage</td>
<td>0.00</td>
<td>0.00</td>
<td>0.86</td>
<td>0.03</td>
<td>0.42</td>
<td>0.69</td>
</tr>
<tr>
<td>Do2</td>
<td>0.27</td>
<td>0.86</td>
<td>0.00</td>
<td>0.64</td>
<td>0.02</td>
<td>0.56</td>
</tr>
<tr>
<td>Maxdepth</td>
<td>0.01</td>
<td>0.03</td>
<td>0.64</td>
<td>0.00</td>
<td>0.77</td>
<td>0.69</td>
</tr>
<tr>
<td>NO3</td>
<td>0.01</td>
<td>0.42</td>
<td>0.02</td>
<td>0.77</td>
<td>0.00</td>
<td>0.48</td>
</tr>
<tr>
<td>SO4</td>
<td>0.89</td>
<td>0.69</td>
<td>0.56</td>
<td>0.69</td>
<td>0.48</td>
<td>0.00</td>
</tr>
<tr>
<td>Temp</td>
<td>0.26</td>
<td>0.98</td>
<td>0.01</td>
<td>0.97</td>
<td>0.99</td>
<td>0.52</td>
</tr>
</tbody>
</table>
pairs(data=Data,
 ~ Longnose + Acerage + DO2 + Maxdepth + NO3 + SO4 + Temp)

library(PerformanceAnalytics)

chart.Correlation(Data.num,
 method="pearson",
 histogram=TRUE,
 pch=16)
Multiple regression

Model selection using the *step* function
The *step* function has options to add terms to a model (*direction="forward"*), remove terms from a model (*direction="backward"*), or to use a process that both adds and removes terms (*direction="both"*). It uses AIC (Akaike information criterion) as a selection criterion. You can use the option *k = log(n)* to use BIC instead.

You can add the *test="F"* option to see the p-value for adding or removing terms, but the test will still follow the AIC statistic. If you use this, however, note that a significant p-value essentially argues for the term being included in the model, whether it’s its addition or its removal that’s being considered.

A full model and a null are defined, and then the function will follow a procedure to find the model with the lowest AIC. The final model is shown at the end of the output, with the *Call:* indication, and lists the coefficients for that model.

Stepwise procedure

```r
model.null = lm(Longnose ~ 1, 
    data=Data)
```
Multiple Regression

Define final model

```r
model.full = lm(Longnose ~ Acerage + DO2 + Maxdepth + NO3 + SO4 + Temp,
data=Data)

step(model.null,
scope = list(upper=model.full),
direction="both",
data=Data)
```

Longnose ~ 1

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Sum of Sq</th>
<th>RSS</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Acerage</td>
<td>1</td>
<td>17989.6</td>
<td>131841</td>
<td>518.75</td>
</tr>
<tr>
<td>+ NO3</td>
<td>1</td>
<td>14327.5</td>
<td>135503</td>
<td>520.61</td>
</tr>
<tr>
<td>+ Maxdepth</td>
<td>1</td>
<td>13936.1</td>
<td>135894</td>
<td>520.81</td>
</tr>
<tr>
<td><none></td>
<td></td>
<td></td>
<td>149831</td>
<td>525.45</td>
</tr>
<tr>
<td>+ Temp</td>
<td>1</td>
<td>2931.0</td>
<td>146899</td>
<td>526.10</td>
</tr>
<tr>
<td>+ DO2</td>
<td>1</td>
<td>2777.7</td>
<td>147053</td>
<td>526.17</td>
</tr>
<tr>
<td>+ SO4</td>
<td>1</td>
<td>45.3</td>
<td>149785</td>
<td>527.43</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Sum of Sq</th>
<th>RSS</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Temp</td>
<td>1</td>
<td>2948.0</td>
<td>104956</td>
<td>509.24</td>
</tr>
<tr>
<td>+ DO2</td>
<td>1</td>
<td>669.6</td>
<td>107234</td>
<td>510.70</td>
</tr>
<tr>
<td>- Maxdepth</td>
<td>1</td>
<td>6058.4</td>
<td>113962</td>
<td>510.84</td>
</tr>
<tr>
<td>+ SO4</td>
<td>1</td>
<td>5.9</td>
<td>107898</td>
<td>511.12</td>
</tr>
<tr>
<td>- Acerage</td>
<td>1</td>
<td>14652.0</td>
<td>122556</td>
<td>515.78</td>
</tr>
<tr>
<td>- NO3</td>
<td>1</td>
<td>16489.3</td>
<td>124393</td>
<td>516.80</td>
</tr>
</tbody>
</table>

Define final model

```r
model.final = lm(Longnose ~ Acerage + Maxdepth + NO3,
data=Data)

summary(model.final)  # Show coefficients, R-squared, and overall p-value
```

| | Estimate | Std. Error | t value | Pr(>|t|) |
|----------------|----------|------------|---------|---------|
|(Intercept) | -23.829067 | 1.527e+01 | -1.560 | 0.12367 |
|Acerage | 0.001988 | 6.742e-04 | 2.948 | 0.00446 **|
|Maxdepth | 8.673e+00 | 2.773e+00 | 3.127 | 0.00265 **|
Multiple R-squared: 0.2798, Adjusted R-squared: 0.2461
F-statistic: 8.289 on 3 and 64 DF, p-value: 9.717e-05

Analysis of variance for individual terms

```
library(car)
Anova(model.final, Type="II")
```

Anova Table (Type II tests)

Response: Longnose

<table>
<thead>
<tr>
<th>Sum Sq</th>
<th>Df</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acerage</td>
<td>14652</td>
<td>1</td>
<td>8.6904</td>
</tr>
<tr>
<td>Maxdepth</td>
<td>6058</td>
<td>1</td>
<td>3.5933</td>
</tr>
<tr>
<td>NO3</td>
<td>16489</td>
<td>1</td>
<td>9.7802</td>
</tr>
<tr>
<td>Residuals</td>
<td>107904</td>
<td>64</td>
<td></td>
</tr>
</tbody>
</table>

Simple plot of predicted values with 1-to-1 line

```
Data$predy = predict(model.final)
plot(predy ~ Longnose, data=Data, pch = 16, xlab="Actual response value", ylab="Predicted response value")
abline(0,1, col="blue", lwd=2)
```

Checking assumptions of the model

```
hist(residuals(model.final), col="darkgray")
```
A histogram of residuals from a linear model. The distribution of these residuals should be approximately normal.

```
plot(fitted(model.final),
     residuals(model.final))
```

A plot of residuals vs. predicted values. The residuals should be unbiased and homoscedastic. For an illustration of these properties, see this diagram by Steve Jost at DePaul University: condor.depaul.edu/sjost/it223/documents/resid-plots.gif.

additional model checking plots with: `plot(model.final)`

Model fit criteria
Model fit criteria are available to decide which model is most appropriate. The step function uses AIC, or optionally BIC, but there are others. You don’t want to use multiple R-squared, because it will continue to improve as more terms are added into the model. Instead, you want to use a criterion that balances the improvement in explanatory power with not adding
extraneous terms to the model. Adjusted R^2 is a modification of R^2 that includes this balance. Larger is better. AIC is based on information theory and measures this balance. AICc is an adjustment to AIC that is more appropriate for data sets with relatively fewer observations. BIC is similar to AIC, but penalizes more for additional terms in the model. Smaller is better for AIC, AICc, and BIC. There are differing opinions on which model fitting criteria is best to use, but if you have no opinion, I would recommend AICc for routine use.

Using the `step` procedure to automatically find an optimal model is an option, but some people caution against using an automated procedure because it might not hone in on the best model. Instead, you can look at the model fit criteria for competing models manually. There may be reasons why you wish to include or exclude some terms in the model, and it may be useful to look at different model selection criteria simultaneously.

In my `compare.lm` function below, Shapiro.W and Shapiro.p are results from the Shapiro–Wilks test for normality on the model residuals. A higher Shapiro W and a higher Shapiro p indicate that the residuals are more normally distributed. You should be aware, however, that any model with a high number of observation may yield a significant p-value ($p < 0.05$) for the Shapiro–Wilks test. It is best to investigate the residuals visually.

In the following example, we’ll look only at the terms that are significantly correlated with `Longnose` (`Acreage`, `Maxdepth`, and `NO3`), and then add in the other terms just to show the decrease in AICc by adding extra terms.

Note that AIC and BIC are calculated differently than in the `step` function.

```r
model.1 = lm(Longnose ~ Acerage, data=Data)  
model.2 = lm(Longnose ~ Maxdepth, data=Data)  
model.3 = lm(Longnose ~ NO3, data=Data)  
model.4 = lm(Longnose ~ Acerage + Maxdepth, data=Data)  
model.5 = lm(Longnose ~ Acerage + NO3, data=Data)  
model.6 = lm(Longnose ~ Maxdepth + NO3, data=Data)  
model.7 = lm(Longnose ~ Acerage + Maxdepth + NO3, data=Data)  
model.8 = lm(Longnose ~ Acerage + Maxdepth + NO3 + DO2, data=Data)  
model.9 = lm(Longnose ~ Acerage + Maxdepth + NO3 + SO4, data=Data)  
model.10 = lm(Longnose ~ Acerage + Maxdepth + NO3 + Temp, data=Data)  

library(rcompanion)  
compareLM(model.1, model.2, model.3, model.4, model.5, model.6, model.7, model.8, model.9, model.10)
```

```r
$Models  
  Formula  
  1 "Longnose ~ Acerage"  
  2 "Longnose ~ Maxdepth"  
  3 "Longnose ~ NO3"  
  4 "Longnose ~ Acerage + Maxdepth"  
  5 "Longnose ~ Acerage + NO3"  
  6 "Longnose ~ Maxdepth + NO3"  
  7 "Longnose ~ Acerage + Maxdepth + NO3"  
  8 "Longnose ~ Acerage + Maxdepth + NO3 + DO2"
```
9 "Longnose ~ Acerage + Maxdepth + NO₃ + SO₄"
10 "Longnose ~ Acerage + Maxdepth + NO₃ + Temp"

$Fit.criteria

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>713.7</td>
<td>714.1</td>
<td>720.4</td>
<td>0.12010</td>
<td>0.10670</td>
<td>3.796e-03</td>
<td>0.7278</td>
<td>6.460e-10</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>715.8</td>
<td>716.2</td>
<td>722.4</td>
<td>0.09301</td>
<td>0.07927</td>
<td>1.144e-02</td>
<td>0.7923</td>
<td>2.115e-08</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>715.6</td>
<td>716.0</td>
<td>722.2</td>
<td>0.09562</td>
<td>0.08192</td>
<td>1.029e-02</td>
<td>0.7361</td>
<td>9.803e-10</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>711.8</td>
<td>712.4</td>
<td>720.6</td>
<td>0.16980</td>
<td>0.14420</td>
<td>2.365e-03</td>
<td>0.7934</td>
<td>2.250e-08</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>705.8</td>
<td>706.5</td>
<td>714.7</td>
<td>0.23940</td>
<td>0.21600</td>
<td>1.373e-04</td>
<td>0.7505</td>
<td>2.055e-09</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>710.8</td>
<td>711.4</td>
<td>719.6</td>
<td>0.18200</td>
<td>0.15690</td>
<td>1.458e-03</td>
<td>0.8149</td>
<td>8.405e-08</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>704.1</td>
<td>705.1</td>
<td>715.2</td>
<td>0.27980</td>
<td>0.24610</td>
<td>9.717e-05</td>
<td>0.8108</td>
<td>6.511e-08</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>705.7</td>
<td>707.1</td>
<td>719.0</td>
<td>0.28430</td>
<td>0.23890</td>
<td>2.643e-04</td>
<td>0.8041</td>
<td>4.283e-08</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>706.1</td>
<td>707.5</td>
<td>719.4</td>
<td>0.27990</td>
<td>0.23410</td>
<td>3.166e-04</td>
<td>0.8104</td>
<td>6.345e-08</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>704.2</td>
<td>705.6</td>
<td>717.5</td>
<td>0.29950</td>
<td>0.25500</td>
<td>1.409e-04</td>
<td>0.8225</td>
<td>1.371e-07</td>
</tr>
</tbody>
</table>

Model 7 is the model which minimizes AICc, which is the same model chosen by the step function

Result = compare.lm(model.1, model.2, model.3, model.4, model.5, model.6, model.7, model.8, model.9, model.10)

plot(Result$Fit.criteria$AICc,
 xlab = "Model number",
 ylab = "AICc")

lines(Result$Fit.criteria$AICc)

A plot of AICc (modified Akaike information criterion) of several models. Model 7 minimizes AICc, and is therefore chosen as the best model out of this set.

Comparing models with likelihood ratio test

It may also be helpful to compare models with the extra sum of squares test or likelihood ratio test to see if additional terms significantly reduce the error sum of squares.

One of the compared models should be nested within the other. That is, the one model should be the same as the other, except with additional terms. For example in the set of models below, it is
appropriate to compare `model.7` to `model.4`. Or to compare each of `model.8`, `model.9`, and `model.10` to `model.7`.

For a single comparison, the `anova` function can be used for the Extra SS test, or `lrtest` in `lmtest` can be used for the likelihood ratio test. For multiple comparisons, the `extraSS` and `lrt` functions in the `FSA` package can be used. The `extraSS` function works only for `lm` and `nls` models, whereas the `lrt` function works on a wider range of model objects.

```r
model.4 = lm(Longnose ~ Acerage + Maxdepth, data=Data)
model.7 = lm(Longnose ~ Acerage + Maxdepth + NO3, data=Data)
model.8 = lm(Longnose ~ Acerage + Maxdepth + NO3 + DO2, data=Data)
model.9 = lm(Longnose ~ Acerage + Maxdepth + NO3 + SO4, data=Data)
model.10 = lm(Longnose ~ Acerage + Maxdepth + NO3 + Temp, data=Data)

anova(model.7, model.4)

Analysis of Variance Table

Model 1: Longnose ~ Acerage + Maxdepth + NO3
Model 2: Longnose ~ Acerage + Maxdepth

             Res.Df RSS Df     Sum of Sq      F Pr(>F)
1         64 107904
2         65 124393 -1   -16489 9.7802 0.002654 **

library(lmtest)

lrtest(model.7, model.4)

Likelihood ratio test

Model 1: Longnose ~ Acerage + Maxdepth + NO3
Model 2: Longnose ~ Acerage + Maxdepth

#Df  LogLik Df  Chisq Pr(>Chisq)
1   5 -347.05
2   4 -351.89 -1 9.6701 0.001873 **

library(FSA)

extraSS(model.8, model.9, model.10, com=model.7)

Model 1: Longnose ~ Acerage + Maxdepth + NO3 + DO2
Model 2: Longnose ~ Acerage + Maxdepth + NO3 + SO4
Model 3: Longnose ~ Acerage + Maxdepth + NO3 + Temp
Model A: Longnose ~ Acerage + Maxdepth + NO3

          DfO RSSO DfA RSSA DF SS   F Pr(>F)
1vA 63 107234.38 64 107903.97 -1 -669.59 0.3934 0.5328
2vA 63 107898.06 64 107903.97 -1  -5.91 0.0035 0.9533
Simple Logistic Regression

When to use it
Null hypothesis
How the test works
Assumptions
See the Handbook for information on these topics.

Examples
The Mpi example is shown below in the “How to do the test” section.

Graphing the results
Similar tests
See the Handbook for information on these topics.

How to do the test
Logistic regression can be performed in R with the `glm` (generalized linear model) function. This function uses a link function to determine which kind of model to use, such as logistic, probit, or poisson. These are indicated in the `family` and `link` options. See `?glm` and `?family` for more information.

Assumptions
Generalized linear models have fewer assumptions than most common parametric tests. Observations still need to be independent, and the correct link function needs to be specified. So,
for example you should understand when to use a poisson regression, and when to use a logistic regression. However, the normal distribution of data or residuals is not required.

**Specifying the counts of “successes” and “failures”**

Logistic regression has a dependent variable with two levels. In R, this can be specified in three ways. 1) The dependent variable can be a factor variable where the first level is interpreted as “failure” and the other levels are interpreted as “success”. (As in the second example in this chapter). 2) The dependent variable can be a vector of proportions of successes, with the caveat that the number of observations for each proportion is indicated in the weights option. 3) The dependent variable can be a matrix with two columns, with the first column being the number of “successes” and the second being the number of “failures”. (As in the first example in this chapter).

Not all proportions or counts are appropriate for logistic regression analysis

Note that in each of these specifications, both the number of successes and the number of failures is known. You should not perform logistic regression on proportion data where you don’t know (or don’t tell R) how many individuals went into those proportions. In statistics, 75% is different if it means 3 out of 4 rather than 150 out of 200. As another example where logistic regression doesn’t apply, the weight people lose in a diet study expressed as a proportion of initial weight cannot be interpreted as a count of “successes” and “failures”. Here, you might be able to use common parametric methods, provided the model assumptions are met; log or arc-sine transformations may be appropriate. Likewise, if you count the number of people in front of you in line, you can’t interpret this as a percentage of people since you don’t know how many people are not in front of you in line. In this case with count data as the dependent variable, you might use poisson regression.

**Overdispersion**

One potential problem to be aware of when using generalized linear models is overdispersion. This occurs when the residual deviance of the model is high relative to the residual degrees of freedom. It is basically an indication that the model doesn’t fit the data well.

It is my understanding, however, that overdispersion is technically not a problem for a simple logistic regression, that is one with a binomial dependent and a single continuous independent variable. Overdispersion is discussed in the chapter on *Multiple logistic regression*.

**Pseudo-R-squared**

R does not produce r-squared values for generalized linear models (glm). My function `nagelkerke` will calculate the McFadden, Cox and Snell, and Nagelkerke pseudo-R-squared for glm and other model fits. The Cox and Snell is also called the ML, and the Nagelkerke is also called the Cragg and Uhler. These pseudo-R-squared values compare the maximum likelihood of the model to a nested null model fit with the same method. They should not be thought of as the same as the r-squared from an ordinary-least-squares linear (OLS) model, but instead as a relative measure among similar models. The Cox and Snell for an OLS linear model, however, will be equivalent to r-squared for that model. I have seen it mentioned that a McFadden pseudo-R-squared of 0.2–0.4 indicates a good fit. Whereas, I find that the Nagelkerke usually gives a reasonable indication of the goodness of fit for a model on a scale of 0 to 1. That being said, I have found the Cox and Snell and Nagelkerke to sometimes yield values I wouldn’t expect.
for some glm. The function \( pR^2 \) in the package \( pscl \) will also produce these pseudo-R-squared values.

Testing for p-values

Note that testing p-values for a logistic or poisson regression uses Chi-square tests. This is achieved through the \texttt{test="Wald"} option in \texttt{Anova} to test the significance of each coefficient, and the \texttt{test="Chisq"} option in \texttt{anova} for the significance of the overall model. A likelihood ratio test can also be used to test the significance of the overall model.

\textit{Logistic regression example}

\begin{verbatim}
### -----------------------------------------------
### Logistic regression, amphipod example, p. 247
### -----------------------------------------------

Input = ("Location   Latitude mpi90 mpi100
Port_Townsend,_WA 48.1        47    139
Neskowin,_OR      45.2       177    241
Siuslaw_R.,_OR     44.0      1087   1183
Umpqua_R.,_OR      43.7       187    175
Coos_Bay,_OR       43.5       397    671
San_Francisco,_CA  37.8        40     14
Carmel,_CA         36.6        39     17
Santa_Barbara,_CA  34.3        30      0
")

Data = read.table(textConnection(Input),header=TRUE)

Data$Total = Data$mpi90 + Data$mpi100

Data$Percent = Data$mpi100 / + Data$Total

Model fitting

Trials = cbind(Data$mpi100, Data$mpi90) # Sucesses, Failures

model = glm(Trials ~ Latitude,
            data = Data,
            family = binomial(link="logit"))

Coefficients and exponentiated coefficients

summary(model)

Coefficients:    Estimate Std. Error z value Pr(>|z|)
(Intercept) -7.64686   0.92487  -8.268   <2e-16 ***
Latitude  0.17864   0.02104   8.490   <2e-16 ***
\end{verbatim}
```r
confint(model)
2.5 % 97.5 %
(Intercept) -9.5003746 -5.8702453
Latitude 0.1382141 0.2208032

exp(model$coefficients)
exponentiated coefficients

(Intercept) Latitude
0.0004775391 1.1955899446

exp(confint(model))
95% CI for exponentiated coefficients

2.5 % 97.5 %
(Intercept) 7.482379e-05 0.002822181
Latitude 1.148221e+00 1.247077992

Analysis of variance for individual terms

library(car)
Anova(model, type="II", test="Wald")

Analysis of Deviance Table (Type II tests)

Response: Trials
 Df Chisq Pr(>Chisq)
Latitude 1 72.076 < 2.2e-16 ***

Pseudo-R-squared

library(rcompanion)
nagelkerke(model)

$Models

Model: "glm, Trials ~ Latitude, binomial(link = \"logit\"), Data"
Null: "glm, Trials ~ 1, binomial(link = \"logit\"), Data"

$Pseudo.R.squared.for.model.vs.null

Pseudo.R.squared
McFadden 0.425248
Cox and Snell (ML) 0.999970
Nagelkerke (Cragg and Uhler) 0.999970

Overall p-value for model

anova(model, update(model, ~1),
update here produces null model for comparison
test="Chisq")
```
### Analysis of Deviance Table

**Model 1:** Trials ~ Latitude  
**Model 2:** Trials ~ 1

<table>
<thead>
<tr>
<th>Resid. Df</th>
<th>Resid. Dev</th>
<th>Df</th>
<th>Deviance</th>
<th>Pr(&gt;Chi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>70.333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>153.633</td>
<td>-1</td>
<td>-83.301</td>
</tr>
</tbody>
</table>

```r
library(lmtest)
lrtest(model)
```

**Likelihood ratio test**

**Model 1:** Trials ~ Latitude  
**Model 2:** Trials ~ 1

<table>
<thead>
<tr>
<th>Df</th>
<th>LogLik</th>
<th>Df</th>
<th>Chisq</th>
<th>Pr(&gt;Chisq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-56.293</td>
<td>2</td>
<td>-97.944</td>
<td>&lt; 2.2e-16 ***</td>
</tr>
</tbody>
</table>

### Plot of standardized residuals

```r
plot(fitted(model), rstandard(model))
```

A plot of standardized residuals vs. predicted values. The residuals should be unbiased and homoscedastic. For an illustration of these properties, see this diagram by Steve Jost at DePaul University: condor.depaul.edu/sjost/it223/documents/resid-plots.gif.

```r
additional model checking plots with: plot(model)
```

**Plotting the model**
Logistic regression example

### Logistic regression, favorite insect example, p. 248

```
Input = (
 Height Insect
 62 beetle
 66 other
 61 beetle
 67 other
 62 other
 76 other
 66 other
 70 beetle
 67 other
 66 other
 70 other
 70 other
 77 beetle
 76 other
 72 beetle
 76 beetle
```
Data = read.table(textConnection(Input),header=TRUE)

Model fitting

model = glm(Insect ~ Height,
           data=Data,
           family = binomial(link="logit"))

Coefficients and exponentiated coefficients

summary(model)

Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept)   4.41379    6.66190   0.663   0.508
Height      -0.05016    0.09577  -0.524   0.600

confint(model)

       2.5 %     97.5 %
(Intercept) -8.4723648 18.4667731
Height      -0.2498133  0.1374819

exp(model$coefficients)  # exponentiated coefficients

(Intercept)      Height
  82.5821122   0.9510757

exp(confint(model))  # 95% CI for exponentiated coefficients

         2.5 %     97.5 %
(Intercept) 0.0002091697 1.047171e+08
Height      0.7789461738 1.147381e+0

Analysis of variance for individual terms

library(car)

Anova(model, type="II", test="Wald")
Analysis of Deviance Table (Type II tests)

Response: Insect
   Df  Chisq Pr(>Chisq)
Height     1 0.2743     0.6004
Residuals 23

Pseudo-R-squared

library(rcompanion)
nagelkerke(model)

$Pseudo.R.squared.for.model.vs.null

Pseudo.R.squared
  McFadden                           0.00936978
  Cox and Snell (ML)                 0.01105020
  Nagelkerke (Cragg and Uhler)       0.01591030

Overall p-value for model

anova(model,
   update(model, ~1),        # update here produces null model for comparison
test="Chisq")

Analysis of Deviance Table

Model 1: Insect ~ Height
Model 2: Insect ~ 1
   Resid. Df Resid. Dev  Df Deviance Pr(>Chi)
1       23     29.370
2       24     29.648 -1 -0.27779   0.5982

library(lmtest)
lrtest(model)

Likelihood ratio test

Model 1: Insect ~ Height
Model 2: Insect ~ 1
  #Df  LogLik  Df Chisq Pr(>Chisq)
1    2 -14.685
2    1 -14.824 -1 0.2778  0.5982

Plot of standardized residuals

plot(fitted(model),
     rstandard(model))
### Convert Insect to a numeric variable, levels 0 and 1

```r
Data$Insect.num = as.numeric(Data$Insect) - 1
```

```r
library(FSA)

headtail(Data)
```

<table>
<thead>
<tr>
<th>Height</th>
<th>Insect</th>
<th>Insect.num</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>62 beetle</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>66 other</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>61 beetle</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>72 other</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>70 beetle</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>74 other</td>
<td>1</td>
</tr>
</tbody>
</table>

### Plot

```r
plot(Insect.num ~ Height,
data = Data,
xlab="Height",
ylab="Insect",
pch=19)

curve(predict(model, data.frame(Height=x), type="response"),
 lty=1, lwd=2, col="blue",
 add=TRUE)
```
### Convert Insect to a logical variable, levels TRUE and FALSE

```r
Data$Insect.log = (Data$Insect == "other")

library(FSA)
headtail(Data)
```

<table>
<thead>
<tr>
<th>Height</th>
<th>Insect</th>
<th>Insect.num</th>
<th>Insect.log</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>62</td>
<td>beetle</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>66</td>
<td>other</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>61</td>
<td>beetle</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>72</td>
<td>other</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>70</td>
<td>beetle</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>74</td>
<td>other</td>
<td>1</td>
</tr>
</tbody>
</table>

```r
library(popbio)
logi.hist.plot(Data$Height, Data$Insect.log, boxp=FALSE, type="hist", col="gray", xlab="Height")
```
Logistic regression example with significant model and abbreviated code

```r
Input = ("Continuous Factor
62 A
63 A
64 A
65 A
66 A
67 A
68 A
69 A
70 A
71 A
72 A
73 A
74 A
75 A
72.5 B
73.5 B
74.5 B
75 B
76 B
77 B
78 B
79 B
80 B
81 B
82 B
83 B
84 B
85 B
86 B
```

---

Logistic regression example with significant model and abbreviated code
")

Data = read.table(textConnection(Input), header=TRUE)

model = glm(Factor ~ Continuous,
            data=Data,
            family = binomial(link="logit"))

summary(model)

Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) -66.4981    32.3787  -2.054   0.0400 *
Continuous    0.9027     0.4389   2.056   0.0397 *

library(car)

Anova(model, type="II", test="Wald")

Analysis of Deviance Table (Type II tests)

Response: Factor
             Df Chisq Pr(>Chisq)
Continuous   1 4.229    0.03974 *
Residuals    27

library(rcompanion)

nagelkerke(model)

Pseudo.R.squared

McFadden       0.697579
Cox and Snell (ML)  0.619482
Nagelkerke (Cragg and Uhler) 0.826303

anova(model,
       update(model, ~1),
       test="Chisq")

   Resid. Df Resid. Dev  Df Deviance Pr(>Chi)
1         27     12.148
2         28   40.168   1  28.02  1.2e-07 ***

plot(fitted(model),
      rstandard(model))
### Convert Factor to a numeric variable, levels 0 and 1

```r
Data$Factor.num = as.numeric(Data$Factor) - 1
```

```r
library(FSA)
headtail(Data)
```

```
Continuous Factor Factor.num
1 62 A 0
2 63 A 0
3 64 A 0
27 84 B 1
28 85 B 1
29 86 B 1
```

```r
plot(Factor.num ~ Continuous,
data = Data,
 xlab="Continuous",
 ylab="Factor",
 pch=19)
```

```r
curve(predict(model=data.frame(Continuous=x),type="response"),
 lty=1, lwd=2, col="blue",
 add=TRUE)
```
### Convert Factor to a logical variable, levels TRUE and FALSE

```r
Data$Factor.log = (Data$Factor == "B")
```

```r
library(FSA)
headtail(Data)
```

```r
continuous and categorical
headtail(Data)
```

```r
library(popbio)
logi.hist.plot(Data$Continuous,
 Data$Factor.log,
 boxp=FALSE,
 type="hist",
 col="gray",
 xlab="Height")
```
Power analysis
See the *Handbook* for information on this topic.

## Multiple Logistic Regression

### When to use it
The bird example is shown in the “How to do multiple logistic regression” section.

### Null hypothesis

### How it works

### Selecting variables in multiple logistic regression
See the *Handbook* for information on these topics.

### Assumptions
See the *Handbook* and the “How to do multiple logistic regression” section below for information on this topic.

### Example

### Graphing the results

### Similar tests
See the *Handbook* for information on these topics.

### How to do multiple logistic regression
Multiple logistic regression can be determined by a stepwise procedure using the *step* function. This function selects models to minimize AIC, not according to p-values as does the SAS example in the *Handbook*. Note, also, that in this example the *step* function found a different model than did the procedure in the *Handbook*. 

242
It is often advised to not blindly follow a stepwise procedure, but to also compare competing models using fit statistics (AIC, AICc, BIC), or to build a model from available variables that are biologically or scientifically sensible.

Multiple correlation is one tool for investigating the relationship among potential independent variables. For example, if two independent variables are correlated to one another, likely both won't be needed in a final model, but there may be reasons why you would choose one variable over the other.

**Multiple correlation**

```r
Input = ("#
Species Status Length Mass Range Migr Insect Diet Clutch Broods Wood Upland Water Release Indiv
Cyg_color 1 1520 9600 1.21 1 12 2 6 1 0 0 1 1 6 29
Cyg_atra 1 1250 5000 0.56 1 0 1 6 1 0 0 1 10 85
Cer_nova 1 870 3360 0.07 1 0 1 4 1 0 0 1 3 8
Anu_car 0 720 2517 1.1 3 12 2 3.8 1 0 0 1 1 10
Anu_anse 0 820 3170 3.45 3 0 1 5.9 1 0 0 1 2 7
Bras_cana 1 770 4390 2.96 2 0 1 5.9 1 0 0 1 10 60
Bras_sand 0 50 1930 0.01 1 0 1 4 2 0 0 0 1 2
Alo_aegy 0 680 2040 2.71 1 NA 2 8.5 1 0 0 1 1 8
Ana_plat 1 570 1020 9.01 2 6 2 12.6 1 0 0 1 17 1539
Ana_acut 0 580 910 7.9 3 6 2 8.3 1 0 0 1 3 102
Ana_pene 0 480 590 4.33 3 0 1 8.7 1 0 0 1 5 32
Aix_spon 0 470 539 1.04 3 12 2 13.5 2 1 0 1 5 10
Ayt_feri 0 450 940 2.17 3 12 2 9.5 1 0 0 1 3 9
Ayt_full 0 435 684 4.81 3 12 2 10.1 1 0 0 1 2 5
Ore_pict 0 275 230 0.31 1 3 1 9.5 1 1 1 0 9 398
Lop_cal 1 256 162 0.24 1 3 1 14.2 2 0 0 0 15 1420
Col_vir 1 230 170 0.77 1 3 1 13.7 1 0 0 0 17 1156
Ale_grea 1 330 501 2.23 1 3 1 15.5 1 0 1 0 15 362
Ale_rufa 0 330 439 0.22 1 3 2 11.2 2 0 0 0 2 20
Per_perd 0 300 386 2.4 1 3 1 14.6 1 0 1 0 24 676
Cot_pect 0 182 95 0.33 3 NA 2 7.5 1 0 0 0 3 NA
Cot_aust 1 180 95 0.69 2 12 2 11 1 0 1 11 601
Lop_nyc 0 800 1150 0.28 1 12 2 5 1 1 1 0 4 6
Pha_col 1 710 850 1.25 1 12 2 11.8 1 1 0 0 27 244
Syr_reev 0 750 949 0.2 1 12 2 9.5 1 1 1 0 2 9
Tet_tetr 0 470 900 4.17 1 3 1 7.9 1 1 1 0 2 13
Lag_lago 0 390 517 7.29 1 0 1 7.5 1 1 1 0 2 4
Ped_phas 0 440 815 1.83 1 3 1 12.3 1 1 0 0 1 22
Tym_cum 0 435 770 0.26 1 4 1 12 1 0 0 0 3 57
Van_vane 0 300 226 3.93 2 12 3 3.8 1 0 0 1 8 124
Plu_squa 0 285 318 1.67 3 12 3 4 1 0 0 1 2 3
Pte_alch 0 350 225 1.21 2 0 1 2.5 2 0 0 0 1 8
Pha_vall 0 320 350 0.6 1 12 2 2 2 1 0 0 8 42
Ocy_loph 0 330 205 0.76 1 0 1 2 7 1 0 1 4 23
Lee_mela 0 372 NA 0.07 1 12 2 2 1 1 0 0 6 34
Ath_noct 1 220 176 4.84 1 12 3 3.6 1 1 0 0 7 221
Tyt_alba 0 340 298 8.9 2 0 3 5.7 2 1 0 0 1 7
Dac_nova 1 460 382 0.34 1 12 3 2 1 1 0 0 7 21
")
```
### Select only those variables that are numeric or can be made numeric

```r
Data = read.table(textConnection(Input), header=TRUE)
```

Create a data frame of numeric variables

```r
Select only those variables that are numeric or can be made numeric

library(dplyr)

Data.num = select(Data, Status, Length, Mass, Range, Migr, Insect, Diet, Clutch, Broods, Wood)

```
### Covert integer variables to numeric variables

```r
Data.num$Status = as.numeric(Data.num$Status)
Data.num$Length = as.numeric(Data.num$Length)
Data.num$Migr = as.numeric(Data.num$Migr)
Data.num$Insect = as.numeric(Data.num$Insect)
Data.num$Diet = as.numeric(Data.num$Diet)
Data.num$Broods = as.numeric(Data.num$Broods)
Data.num$Wood = as.numeric(Data.num$Wood)
Data.num$Upland = as.numeric(Data.num$Upland)
Data.num$Water = as.numeric(Data.num$Water)
Data.num$Release = as.numeric(Data.num$Release)
Data.num$Indiv = as.numeric(Data.num$Indiv)
```

### Examine the new data frame

```r
library(FSA)
headtail(Data.num)
```

<table>
<thead>
<tr>
<th>Status</th>
<th>Length</th>
<th>Mass</th>
<th>Range</th>
<th>Migr</th>
<th>Insect</th>
<th>Diet</th>
<th>Clutch</th>
<th>Broods</th>
<th>Wood</th>
<th>Upland</th>
<th>Water</th>
<th>Release</th>
<th>Indiv</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1520</td>
<td>9600.0</td>
<td>1.21</td>
<td>1</td>
<td>12</td>
<td>2</td>
<td>6.0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>29</td>
</tr>
<tr>
<td>2</td>
<td>1250</td>
<td>5000.0</td>
<td>0.56</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>6.0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>10</td>
<td>85</td>
</tr>
<tr>
<td>3</td>
<td>870</td>
<td>3360.0</td>
<td>0.07</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>4.0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>77</td>
<td>170</td>
<td>31.0</td>
<td>0.55</td>
<td>3</td>
<td>12</td>
<td>2</td>
<td>4.0</td>
<td>NA</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>78</td>
<td>210</td>
<td>36.9</td>
<td>2.00</td>
<td>2</td>
<td>8</td>
<td>2</td>
<td>3.7</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>79</td>
<td>225</td>
<td>106.5</td>
<td>1.20</td>
<td>2</td>
<td>12</td>
<td>2</td>
<td>4.8</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Examining correlations among variables

```r
Note I used Spearman correlations here

```r
library(PerformanceAnalytics)
chart.Correlation(Data.num, 
                  method="spearman", 
                  histogram=TRUE, 
                  pch=16)
```
Multiple logistic regression

In this example, the data contain missing values. In SAS, missing values are indicated with a period, whereas in R missing values are indicated with NA. SAS will often deal with missing values seamlessly. While this makes things easier for the user, it may not ensure that the user understands what is being done with these missing values. In some cases, R requires that the user be explicit about how missing values are handled. One method to handle missing values in a multiple regression would be to remove all observations from the data set that have any missing values. This is what we will do prior to the stepwise procedure, creating a data frame called `Data.omit`. However, when we create our final model, we want to exclude only those observations that have missing values in the variables that are actually included in that final model.
model. For testing the overall p-value of the final model, plotting the final model, or using the `glm.compare` function, we will create a data frame called `Data.final` with only those observations excluded.

There are some cautions about using the `step` procedure with certain glm fits, though models in the binomial and poission families should be okay. See `?stats::step` for more information.

```r
### Multiple logistic regression, bird example, p. 254-256
### ---------------------------------------------

Input = ("Species Status Length Mass Range Migr Insect Diet Clutch Broods Wood Upland Water Release Indiv
Cygolor 1 1520 9600 1.21 1 12 2 6 1 0 0 1 6 29
Cygatra 1 1250 5000 0.56 3 12 1 6 1 0 0 1 10 85
Cer_nova 1 870 3360 0.07 1 12 1 4 1 0 0 1 3 8
Ansaer 0 720 2517 1.1 3 12 2 3.8 1 0 0 1 1 10
Ansanse 0 820 3170 3.45 3 12 1 5.9 1 0 0 1 2 7
Barsana 1 770 4390 2.96 2 12 1 5.9 1 0 0 1 10 60
Basand 0 50 1930 0.01 1 12 1 4.2 1 0 0 1 2
Aloaegy 0 680 2040 2.71 1 NA 2 8.5 1 0 0 1 1 8
Anplat 1 570 1020 9.01 2 6 2 12.6 1 0 0 1 17 1539
Anacut 0 580 910 7.9 3 6 2 8.3 1 0 0 1 3 102
Anpene 0 480 590 4.33 3 0 1 8.7 1 0 0 1 5 32
Atixspen 0 470 539 1.04 3 12 2 13.5 2 1 0 1 5 10
Aytferi 0 450 940 2.17 3 12 2 9.5 1 0 0 1 3 9
Aytfuli 0 435 684 4.81 3 12 2 10.1 1 0 0 1 2 5
Orepict 0 275 230 0.3 1 3 1 9.5 1 1 1 0 9 398
Lopcalli 1 256 1620 0.24 1 3 1 13.2 1 0 0 1 15 1420
Colvirg 0 230 170 0.77 1 3 1 13.7 1 0 0 0 17 1156
Alegra 1 330 501 2.23 1 3 1 15.5 1 0 0 1 15 362
Alerufa 0 330 439 0.22 1 3 2 11.2 2 0 0 0 2 20
Perperd 0 300 386 2.4 1 3 1 14.6 1 0 0 0 24 676
Cotpect 0 182 95 0.33 3 NA 2 7.5 1 0 0 0 3 NA
Cotaust 1 180 95 0.69 2 12 2 11 1 0 0 1 11 601
Lopnyct 0 800 1150 0.28 1 12 2 5 1 1 1 0 4 6
Phacolc 1 710 850 1.25 1 12 2 11.8 1 0 0 27 244
Syrreee 0 750 949 0.2 1 12 2 9.5 1 1 1 0 2 9
Teltelem 0 470 300 4.17 1 3 1 7.9 1 0 0 2 13
Laglago 0 390 517 7.29 1 0 1 7.5 1 1 1 0 2 4
Pedphas 0 440 815 1.83 1 3 1 12.3 1 1 0 0 1 22
Tymcupi 0 435 770 0.26 1 4 1 12.1 1 0 0 0 3 57
Vanvane 0 300 226 3.93 2 12 3 3.8 1 0 0 0 8 124
Plusqua 0 285 318 1.67 3 12 3 4 1 0 0 1 2 3
Ptealich 0 350 225 1.21 2 0 1 2.5 2 0 0 0 1 8
Phachal 0 320 350 0.6 1 12 2 2 2 1 0 0 8 42
Ocyloph 0 330 205 0.76 1 0 1 2 7 1 0 0 4 23
Leumela 0 372 NA 0.07 1 12 2 2 1 1 0 0 6 34
Athnoct 0 220 176 4.84 1 12 3 3.6 1 1 0 7 221
Tythalva 0 340 298 8.9 2 0 3 5.7 2 1 0 0 1 7
Dacnava 1 460 382 0.34 1 12 3 2 1 1 1 0 0 7 21
Lularrobo 0 150 32.1 1.78 2 4 2 3.9 2 1 0 0 1 5
Alarave 1 185 38.9 5.19 2 12 2 3.7 3 0 0 0 11 391
Pruclusa 0 145 20.5 1.95 2 12 2 3.4 2 1 0 0 14 245
Erirobe 0 140 15.8 2.31 2 12 2 5 2 1 0 0 11 123
Lusmegas 0 161 19.4 1.88 3 12 2 4.7 2 1 0 0 4 7
Turmeru 1 255 82.6 3.3 2 12 2 3.8 3 1 0 0 16 396
Turphil 1 230 67.3 4.84 2 12 2 4.7 2 1 0 0 12 343
Sylicomm 0 140 12.8 3.39 3 12 2 4.6 2 1 0 0 1 2
Sylatri 0 142 17.5 2.43 2 5 2 4.6 2 1 0 0 1 5
Manmela 0 180 NA 0.04 1 12 3 1.9 5 1 0 0 1 2
Manmela 0 265 59 0.25 1 12 2 2.6 NA 1 0 0 1 80
Graicyan 0 275 128 0.83 1 12 3 3 2 1 0 1 1 NA
Gymtibi 1 400 380 0.82 1 12 3 4 1 1 0 0 15 448
Cormone 0 335 203 3.4 2 12 2 4.5 1 1 0 0 2 3
```

247
Data = read.table(textConnection(Input),header=TRUE)

Determining model with step procedure

Create new data frame with all missing values removed (NA's)

Data.omit = na.omit(Data)

Define full and null models and do step procedure

model.null = glm(Status ~ 1,
data=Data.omit,
family = binomial(link="logit"))

model.full = glm(Status ~ Length + Mass + Range + Migr + Insect + Diet +
Clutch + Broods + Wood + Upland + Water +
Release + Indiv,
data=Data.omit,
family = binomial(link="logit"))

step(model.null,
scope = list(upper=model.full),
direction="both",
test="Chisq",
data=Data)
Start: AIC=92.34
Status ~ 1

<table>
<thead>
<tr>
<th>Df</th>
<th>Deviance</th>
<th>AIC</th>
<th>LRT</th>
<th>Pr(>Chi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Release 1</td>
<td>56.130</td>
<td>60.130</td>
<td>34.213</td>
<td>4.940e-09 ***</td>
</tr>
<tr>
<td>+ Indiv 1</td>
<td>60.692</td>
<td>64.692</td>
<td>29.651</td>
<td>5.172e-08 ***</td>
</tr>
<tr>
<td>+ Migr 1</td>
<td>85.704</td>
<td>89.704</td>
<td>4.639</td>
<td>0.03125 *</td>
</tr>
<tr>
<td>+ Upland 1</td>
<td>86.987</td>
<td>90.987</td>
<td>3.356</td>
<td>0.06696 .</td>
</tr>
<tr>
<td>+ Insect 1</td>
<td>88.231</td>
<td>92.231</td>
<td>2.112</td>
<td>0.14614</td>
</tr>
<tr>
<td><none> 90.343</td>
<td>92.343</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ Mass 1</td>
<td>88.380</td>
<td>92.380</td>
<td>1.963</td>
<td>0.16121</td>
</tr>
<tr>
<td>+ Wood 1</td>
<td>88.781</td>
<td>92.781</td>
<td>1.562</td>
<td>0.21133</td>
</tr>
<tr>
<td>+ Diet 1</td>
<td>89.195</td>
<td>93.195</td>
<td>1.148</td>
<td>0.28394</td>
</tr>
<tr>
<td>+ Length 1</td>
<td>89.372</td>
<td>93.372</td>
<td>0.972</td>
<td>0.32430</td>
</tr>
<tr>
<td>+ Water 1</td>
<td>90.104</td>
<td>94.104</td>
<td>0.240</td>
<td>0.62448</td>
</tr>
<tr>
<td>+ Broods 1</td>
<td>90.223</td>
<td>94.223</td>
<td>0.120</td>
<td>0.72898</td>
</tr>
<tr>
<td>+ Range 1</td>
<td>90.255</td>
<td>94.255</td>
<td>0.088</td>
<td>0.76676</td>
</tr>
<tr>
<td>+ Clutch 1</td>
<td>90.332</td>
<td>94.332</td>
<td>0.012</td>
<td>0.91420</td>
</tr>
<tr>
<td>. .</td>
<td>. .</td>
<td></td>
<td>. .</td>
<td>. .</td>
</tr>
<tr>
<td>. .</td>
<td>< several more steps ></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>. .</td>
<td>. .</td>
<td></td>
<td>. .</td>
<td>. .</td>
</tr>
</tbody>
</table>

Step: AIC=42.03
Status ~ Upland + Migr + Mass + Indiv + Insect + Wood

<table>
<thead>
<tr>
<th>Df</th>
<th>Deviance</th>
<th>AIC</th>
<th>LRT</th>
<th>Pr(>Chi)</th>
</tr>
</thead>
<tbody>
<tr>
<td><none> 28.031</td>
<td>42.031</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Wood 1</td>
<td>30.710</td>
<td>42.710</td>
<td>2.679</td>
<td>0.101686</td>
</tr>
<tr>
<td>+ Diet 1</td>
<td>26.960</td>
<td>42.960</td>
<td>1.071</td>
<td>0.300673</td>
</tr>
<tr>
<td>+ Length 1</td>
<td>27.965</td>
<td>43.965</td>
<td>0.066</td>
<td>0.796641</td>
</tr>
<tr>
<td>+ Water 1</td>
<td>27.970</td>
<td>43.970</td>
<td>0.062</td>
<td>0.803670</td>
</tr>
<tr>
<td>+ Broods 1</td>
<td>27.983</td>
<td>43.983</td>
<td>0.048</td>
<td>0.825974</td>
</tr>
<tr>
<td>+ Clutch 1</td>
<td>28.005</td>
<td>44.005</td>
<td>0.027</td>
<td>0.870592</td>
</tr>
<tr>
<td>+ Release 1</td>
<td>28.009</td>
<td>44.009</td>
<td>0.022</td>
<td>0.881631</td>
</tr>
<tr>
<td>+ Range 1</td>
<td>28.031</td>
<td>44.031</td>
<td>0.000</td>
<td>0.999964</td>
</tr>
<tr>
<td>- Insect 1</td>
<td>32.369</td>
<td>44.369</td>
<td>4.338</td>
<td>0.037276 *</td>
</tr>
<tr>
<td>- Migr 1</td>
<td>35.169</td>
<td>47.169</td>
<td>7.137</td>
<td>0.007550 **</td>
</tr>
<tr>
<td>- Upland 1</td>
<td>38.302</td>
<td>50.302</td>
<td>10.270</td>
<td>0.001352 **</td>
</tr>
<tr>
<td>- Mass 1</td>
<td>43.402</td>
<td>55.402</td>
<td>15.371</td>
<td>8.833e-05 ***</td>
</tr>
<tr>
<td>- Indiv 1</td>
<td>71.250</td>
<td>83.250</td>
<td>43.219</td>
<td>4.894e-11 ***</td>
</tr>
</tbody>
</table>

Final model

model.final = glm(Status ~ Upland + Migr + Mass + Indiv + Insect + Wood,
data=Data,
family = binomial(link="logit"),
na.action(na.omit)
)

summary(model.final)

Coefficients:

| Estimate | Std. Error | z value | Pr(>|z|) |
|----------|------------|---------|-------|
| (Intercept) | -3.5496482 | 2.0827400 | -1.704 | 0.088322 .|
| Upland | -4.5484289 | 2.0712502 | -2.196 | 0.028093 *|
Multiple Logistic Regression

AN R Companion for the Handbook of Biological Statistics

Analysis of variance for individual terms

```r
library(car)
Anova(model.final, type="II", test="Wald")
```

Pseudo-R-squared

```r
library(rcompanion)
nagelkerke(model.final)

$Pseudo.R.squared.for.model.vs.null

<table>
<thead>
<tr>
<th>Pseudo.R.squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>McFadden</td>
</tr>
<tr>
<td>Cox and Snell (ML)</td>
</tr>
<tr>
<td>Nagelkerke (Cragg and Uhler)</td>
</tr>
<tr>
<td>0.700475</td>
</tr>
<tr>
<td>0.637732</td>
</tr>
<tr>
<td>0.833284</td>
</tr>
</tbody>
</table>
```

Overall p-value for model

```r
### Create data frame with variables in final model and NA's omitted

library(dplyr)
Data.final = select(Data, Status, Upland, Migr, Mass, Indiv, Insect, Wood)
Data.final = na.omit(Data.final)

### Define null models and compare to final model

```r
model.null = glm(Status ~ 1, data=Data.final, family = binomial(link="logit")
anova(model.final, model.null)
```
model.null,
  test="Chisq")

Analysis of Deviance Table

Model 1: Status ~ Upland + Migr + Mass + Indiv + Insect + Wood
Model 2: Status ~ 1

<table>
<thead>
<tr>
<th>Resid. Df</th>
<th>Resid. Dev</th>
<th>Df</th>
<th>Deviance</th>
<th>Pr(&gt;Chi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>63</td>
<td>30.392</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>69</td>
<td>93.351</td>
<td>6</td>
<td>62.959</td>
</tr>
</tbody>
</table>

library(lmtest)
lrtest(model.final)

Likelihood ratio test

<table>
<thead>
<tr>
<th>#Df</th>
<th>LogLik</th>
<th>Df</th>
<th>Chisq</th>
<th>Pr(&gt;Chisq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-15.196</td>
<td>7</td>
<td>-15.196</td>
<td>62.959</td>
</tr>
<tr>
<td>2</td>
<td>-46.675</td>
<td>1</td>
<td>-62.959</td>
<td>1.125e-11 ***</td>
</tr>
</tbody>
</table>

Plot of standardized residuals

plot(fitted(model.final),
     rstandard(model.final))

Simple plot of predicted values

### Create data frame with variables in final model and NA's omitted

library(dplyr)

Data.final =
  select(Data, 
         Status, 
         Upland, 
         ...)
Check for overdispersion
Overdispersion is a situation where the residual deviance of the glm is large relative to the residual degrees of freedom. These values are shown in the summary of the model. One guideline is that if the ratio of the residual deviance to the residual degrees of freedom exceeds 1.5, then the model is overdispersed. Overdispersion indicates that the model doesn’t fit the data well: the explanatory variables may not well describe the dependent variable or the model may not be specified correctly for these data. If there is overdispersion, one potential solution is to use the quasibinomial family option in glm.

```r
summary(model)
```

Null deviance: 93.351 on 69 degrees of freedom
Residual deviance: 30.392 on 63 degrees of freedom

```r
summary(model.final)$deviance / summary(model.final)$df.residual
```
Alternative to assess models: using `compare.glm`
An alternative to, or a supplement to, using a stepwise procedure is comparing competing models with fit statistics. My `compare.glm` function will display AIC, AICc, BIC, and pseudo-R-squared for glm models. The models used should all be fit to the same data. That is, caution should be used if different variables in the data set contain missing values. If you don’t have any preference on which fit statistic to use, I might recommend AICc, or BIC if you’d rather aim for having fewer terms in the final model.

A series of models can be compared with the standard `anova` function. Models should be nested within the previous model or the next model in the list in the `anova` function; and models should be fit to the same data. When comparing multiple regression models, a p-value to include a new term is often relaxed is 0.10 or 0.15.

In the following example, the models chosen with the stepwise procedure are used. Note that while model 9 minimizes AIC and AICc, model 8 minimizes BIC. The anova results suggest that model 8 is not a significant improvement to model 7. These results give support for selecting any of model 7, 8, or 9. Note that the SAS example in the Handbook selected model 4.

```r
Create data frame with just final terms and no NA's
library(dplyr)
Data.final = select(Data,
 Status,
 Upland,
 Migr,
 Mass,
 Indiv,
 Insect,
 Wood)
Data.final = na.omit(Data.final)

Define models to compare.
model.1=glm(Status ~ 1,
 data=Data.omit, family=binomial())
model.2=glm(Status ~ Release,
 data=Data.omit, family=binomial())
model.3=glm(Status ~ Release + Upland,
 data=Data.omit, family=binomial())
model.4=glm(Status ~ Release + Upland + Migr,
 data=Data.omit, family=binomial())
model.5=glm(Status ~ Release + Upland + Migr + Mass,
 data=Data.omit, family=binomial())
model.6=glm(Status ~ Release + Upland + Migr + Mass + Indiv,
 data=Data.omit, family=binomial())
```

[1] 0.482417
```r
model.7 <- glm(Status ~ Release + Upland + Migr + Mass + Indiv + Insect,
 data=Data.omit, family=binomial())
model.8 <- glm(Status ~ Upland + Migr + Mass + Indiv + Insect,
 data=Data.omit, family=binomial())
model.9 <- glm(Status ~ Upland + Migr + Mass + Indiv + Insect + Wood,
 data=Data.omit, family=binomial())

Use compare.glm to assess fit statistics.
library(rcompanion)
compareGLM(model.1, model.2, model.3, model.4, model.5, model.6,
 model.7, model.8, model.9)

$Models
 Formula
1 "Status ~ 1"
2 "Status ~ Release"
3 "Status ~ Release + Upland"
4 "Status ~ Release + Upland + Migr"
5 "Status ~ Release + Upland + Migr + Mass"
6 "Status ~ Release + Upland + Migr + Mass + Indiv"
7 "Status ~ Release + Upland + Migr + Mass + Indiv + Insect"
8 "Status ~ Upland + Migr + Mass + Indiv + Insect"
9 "Status ~ Upland + Migr + Mass + Indiv + Insect + Wood"

$Fit.criteria
 Rank df.res AIC AICc BIC McFadden Cox.and.Snell Nagelkerke p.value
1 1 66 94.34 94.53 98.75 0.0000 0.0000 0.0000 Inf
2 2 65 62.13 62.51 68.74 0.3787 0.3999 0.5401 2.538e-09
3 3 64 56.02 56.67 64.84 0.4684 0.4683 0.6325 3.232e-10
4 4 63 51.63 52.61 62.65 0.5392 0.5167 0.6979 7.363e-11
5 5 62 50.64 52.04 63.87 0.5723 0.5377 0.7263 3.762e-11
6 6 61 49.07 50.97 64.50 0.6118 0.5618 0.7588 5.434e-11
7 7 60 46.42 48.90 64.05 0.6633 0.5912 0.7985 2.177e-11
8 6 61 44.71 46.61 60.14 0.6601 0.5894 0.7961 6.885e-12
9 7 60 44.03 46.51 61.67 0.6897 0.6055 0.8178 7.148e-12

Use anova to compare each model to the previous one.
anova(model.1, model.2, model.3, model.4, model.5, model.6,
 model.7, model.8, model.9,
 test="Chisq")

Analysis of Deviance Table

Model 1: Status ~ 1
Model 2: Status ~ Release
Model 3: Status ~ Release + Upland
Model 4: Status ~ Release + Upland + Migr
Model 5: Status ~ Release + Upland + Migr + Mass
Model 6: Status ~ Release + Upland + Migr + Mass + Indiv
```
Model 7: Status ~ Release + Upland + Migr + Mass + Indiv + Insect
Model 8: Status ~ Upland + Migr + Mass + Indiv + Insect
Model 9: Status ~ Upland + Migr + Mass + Indiv + Insect + Wood

<table>
<thead>
<tr>
<th>Resid. Df</th>
<th>Resid. Dev</th>
<th>Df</th>
<th>Deviance</th>
<th>Pr(&gt;Chi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>66</td>
<td>90.343</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>65</td>
<td>56.130</td>
<td>1</td>
<td>34.213</td>
</tr>
<tr>
<td>3</td>
<td>64</td>
<td>48.024</td>
<td>1</td>
<td>8.106</td>
</tr>
<tr>
<td>4</td>
<td>63</td>
<td>41.631</td>
<td>1</td>
<td>6.393</td>
</tr>
<tr>
<td>5</td>
<td>62</td>
<td>38.643</td>
<td>1</td>
<td>2.988</td>
</tr>
<tr>
<td>6</td>
<td>61</td>
<td>35.070</td>
<td>1</td>
<td>3.573</td>
</tr>
<tr>
<td>7</td>
<td>60</td>
<td>30.415</td>
<td>1</td>
<td>4.655</td>
</tr>
<tr>
<td>8</td>
<td>61</td>
<td>30.710</td>
<td>-1</td>
<td>-0.295</td>
</tr>
<tr>
<td>9</td>
<td>60</td>
<td>28.031</td>
<td>1</td>
<td>2.679</td>
</tr>
</tbody>
</table>

# # #

Power analysis

See the *Handbook* for information on this topic.
Multiple Comparisons

The problem with multiple comparisons
See the *Handbook* for information on this topic. Also see sections of this book with the terms “multiple comparisons”, “Tukey”, “pairwise”, “post-hoc”, “p.adj”, “p.adjust”, ‘p.method”, or “adjust”.

Controlling the familywise error rate: Bonferroni correction
Example is shown below in the “How to do the tests” section

Controlling the false discovery rate: Benjamini–Hochberg procedure
Example is shown below in the “How to do the tests” section

Assumption
When not to correct for multiple comparisons
See the *Handbook* for information on these topics.

How to do the tests
R has built in methods to adjust a series of p-values either to control the family-wise error rate or to control the false discovery rate.

The methods Holm, Hochberg, Hommel, and Bonferroni control the family-wise error rate. These methods attempt to limit the probability of even one false discovery (a type I error, incorrectly rejecting the null hypothesis when there is no real effect), and so are all relatively strong (conservative).

The methods BH (Benjamini–Hochberg, which is the same as FDR in R) and BY control the false discovery rate. These methods attempt to control the expected proportion of false discoveries.

For more information on these methods, see ?p.adjust or other resources.

Note that these methods require only the p-values to adjust and the number of p-values that are being compared. This is different from methods such as Tukey or Dunnett that require also the variability of the underlying data. Tukey and Dunnett are considered familywise error rate methods.

To get some sense of how conservative these different adjustments are, see the two plots below in this chapter.

There is no definitive advice on which p-value adjustment measure to use. In general, you should choose a method which will be familiar to your audience or in your field of study. In addition, there may be some logic which allows you to choose how you balance the probability of making a type I error relative to a type II error. For example, in a preliminary study, you might want to
keep as many significant values as possible to not exclude potentially significant factors from future studies. On the other hand, in a medical study where people's lives are at stake and very expensive treatments are being considered, you would want to have a very high level of certainty before concluding that one treatment is better than another.

**Multiple comparisons example with 25 p-values**

```r
Multiple comparisons example, p. 262–263

Input = "
Food Raw.p
Blue_fish .34
Bread .594
Butter .212
Carbohydrates .384
Cereals_and_pasta .074
Dairy_products .94
Eggs .275
Fats .696
Fruit .269
Legumes .341
Nuts .06
Olive_oil .008
Potatoes .569
Processed_meat .986
Proteins .042
Red_meat .251
Semi-skimmed_milk .942
Skimmed_milk .222
Sweets .762
Total_calories .001
Total_meat .975
Vegetables .216
White_fish .205
White_meat .041
Whole_milk .039"

Data = read.table(textConnection(Input),header=TRUE)

Order data by p-value

Data = Data[order(Data$Raw.p),]

Check if data is ordered the way we intended

library(FSA)

headtail(Data)
```
### Perform p-value adjustments and add to data frame

```r
Data$Bonferroni = p.adjust(Data$Raw.p, method = "bonferroni")
Data$BH = p.adjust(Data$Raw.p, method = "BH")
Data$Holm = p.adjust(Data$Raw.p, method = "holm")
Data$Hochberg = p.adjust(Data$Raw.p, method = "hochberg")
Data$Hommel = p.adjust(Data$Raw.p, method = "hommel")
Data$BY = p.adjust(Data$Raw.p, method = "BY")
```

<table>
<thead>
<tr>
<th>Food</th>
<th>Raw.p</th>
<th>Bonferroni</th>
<th>BH</th>
<th>Holm</th>
<th>Hochberg</th>
<th>Hommel</th>
<th>BY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total_calories</td>
<td>0.001</td>
<td>0.025</td>
<td>0.025</td>
<td>0.025</td>
<td>0.09539895</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olive_oil</td>
<td>0.008</td>
<td>0.200</td>
<td>0.192</td>
<td>0.192</td>
<td>0.38159582</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whole_milk</td>
<td>0.039</td>
<td>0.975</td>
<td>0.210</td>
<td>0.897</td>
<td>0.80135122</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semi-skimmed_milk</td>
<td>0.942</td>
<td>0.975</td>
<td>0.210</td>
<td>0.882</td>
<td>0.80135122</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total_meat</td>
<td>0.975</td>
<td>0.975</td>
<td>0.210</td>
<td>0.902</td>
<td>0.90200000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processed_meat</td>
<td>0.986</td>
<td>0.986</td>
<td>0.210</td>
<td>0.714</td>
<td>0.80135122</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuts</td>
<td>0.060</td>
<td>0.986</td>
<td>0.840</td>
<td>0.95398954</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cereals_and_pasta</td>
<td>0.074</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.00000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White_fish</td>
<td>0.205</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.00000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butter</td>
<td>0.212</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.00000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vegetables</td>
<td>0.216</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.00000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skimmed_milk</td>
<td>0.222</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.00000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red_meat</td>
<td>0.251</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.00000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruit</td>
<td>0.269</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.00000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eggs</td>
<td>0.275</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.00000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blue_fish</td>
<td>0.340</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.00000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Legumes</td>
<td>0.341</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.00000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbohydrates</td>
<td>0.384</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.00000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potatoes</td>
<td>0.569</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.00000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bread</td>
<td>0.594</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.00000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fats</td>
<td>0.696</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.00000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.000</td>
<td>0.9071429</td>
<td>1.000</td>
<td>0.986</td>
<td>0.986</td>
<td>1.000</td>
</tr>
<tr>
<td>19</td>
<td>Sweets</td>
<td>0.762</td>
<td>1.000</td>
<td>0.986</td>
<td>0.986</td>
<td>1.000</td>
<td>0.986</td>
</tr>
<tr>
<td>6</td>
<td>Dairy_products</td>
<td>0.940</td>
<td>1.000</td>
<td>0.986</td>
<td>0.986</td>
<td>1.000</td>
<td>0.986</td>
</tr>
<tr>
<td>17</td>
<td>Semi-skimmed_milk</td>
<td>0.942</td>
<td>1.000</td>
<td>0.986</td>
<td>0.986</td>
<td>1.000</td>
<td>0.986</td>
</tr>
<tr>
<td>21</td>
<td>Total_meat</td>
<td>0.975</td>
<td>1.000</td>
<td>0.986</td>
<td>0.986</td>
<td>1.000</td>
<td>0.986</td>
</tr>
<tr>
<td>14</td>
<td>Processed_meat</td>
<td>0.986</td>
<td>1.000</td>
<td>0.986</td>
<td>0.986</td>
<td>1.000</td>
<td>0.986</td>
</tr>
</tbody>
</table>

Plot

```r
X = Data$Raw.p
Y = cbind(Data$Bonferroni, Data$BH, Data$Holm, Data$Hochberg, Data$Hommel, Data$BY)

matplot(X, Y,
 xlab="Raw p-value",
 ylab="Adjusted p-value",
 type="l",
 asp=1,
 col=1:6,
 lty=1,
 lwd=2)

legend('bottomright',
 legend = c("Bonferroni", "BH", "Holm", "Hochberg", "Hommel", "BY"),
 col = 1:6,
 cex = 1,
 pch = 16)

abline(0, 1,
 col=1,
 lty=2,
 lwd=1)
```

![Plot](image-url)
Multiple comparisons example with five p-values

```r
Input = ("Factor Raw.p
A .001
B .01
C .025
D .05
E .1")

Data = read.table(textConnection(Input),header=TRUE)

Perform p-value adjustments and add to data frame

Data$Bonferroni =
 p.adjust(Data$Raw.p,
 method = "bonferroni")

Data$BH =
 signif(p.adjust(Data$Raw.p,
 method = "BH"),
 4)

Data$Holm =
 p.adjust(Data$Raw.p,
 method = "holm")

Data$Hochberg =
 p.adjust(Data$Raw.p,
 method = "hochberg")

Data$Hommel =
 p.adjust(Data$Raw.p,
 method = "hommel")

Data$BY =
 signif(p.adjust(Data$Raw.p,
 method = "BY"),
 4)

Data
```

Plot of adjusted p-values vs. raw p-values for a series of 25 p-values. The dashed line represents a one-to-one line.

#   #   #
### Multiple Comparisons

**An R Companion for the Handbook of Biological Statistics**

<table>
<thead>
<tr>
<th>Factor</th>
<th>Raw.p</th>
<th>Bonferroni</th>
<th>BH</th>
<th>Holm</th>
<th>Hochberg</th>
<th>Hommel</th>
<th>BY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A 0.001</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.01142</td>
</tr>
<tr>
<td>2</td>
<td>B 0.010</td>
<td>0.050</td>
<td>0.025</td>
<td>0.040</td>
<td>0.040</td>
<td>0.040</td>
<td>0.05708</td>
</tr>
<tr>
<td>3</td>
<td>C 0.025</td>
<td>0.125</td>
<td>0.04167</td>
<td>0.075</td>
<td>0.075</td>
<td>0.075</td>
<td>0.09514</td>
</tr>
<tr>
<td>4</td>
<td>D 0.050</td>
<td>0.250</td>
<td>0.06250</td>
<td>0.100</td>
<td>0.100</td>
<td>0.100</td>
<td>0.14270</td>
</tr>
<tr>
<td>5</td>
<td>E 0.100</td>
<td>0.500</td>
<td>0.10000</td>
<td>0.100</td>
<td>0.100</td>
<td>0.100</td>
<td>0.22830</td>
</tr>
</tbody>
</table>

**Plot**

```r
X = Data$Raw.p
Y = cbind(Data$Bonferroni,
 Data$BH,
 Data$Holm,
 Data$Hochberg,
 Data$Hommel,
 Data$BY)

matplot(X, Y,
 xlab="Raw p-value",
 ylab="Adjusted p-value",
 type="l",
 asp=1,
 col=1:6,
 lty=1,
 lwd=2)

legend('bottomright',
 legend = c("Bonferroni", "BH", "Holm", "Hochberg", "Hommel", "BY"),
 col = 1:6,
 cex = 1,
 pch = 16)

abline(0, 1,
 col=1,
 lty=2,
 lwd=1)
```

![Graph showing adjusted p-values for different corrections](image)
Plot of adjusted p-values vs. raw p-values for a series of five p-values between 0 and 0.1. Note that Holm and Hochberg have the same values as Hommel, and so are hidden by Hommel. The dashed line represents a one-to-one line.
Chapters Not Covered in this Book

Meta-analysis
Using spreadsheets for statistics
Guide to fairly good graphs
Presenting data in tables
Getting started with SAS
Choosing a statistical test

See the Handbook for information on these topics.
Contrasts in Linear Models

Contrasts can be used to make specific comparisons of treatments within a linear model.

One common use is when a factorial design is used, but control or check treatments are used in addition to the factorial design. In the first example below, there are two treatments ($D$ and $C$) each at two levels (1 and 2), and then there is a Control treatment. The approach used here is to analyze the experiment as a one-way analysis of variance, and then use contrasts to test various hypotheses.

Another common use is when there are several treatments that could be thought of as members of a group. In the second example below, there are measurements for six wines, some of which are red (Merlot, Cabernet, Syrah) and some of which are white (Chardonnay, Riesling, Gewürztraminer). We can compare the treatments within the red wine group by setting up contrasts and conducting an F-test. This is analogous to testing the main effect of Red Wine.

The packages lsmeans and multcomp allow for unlimited tests of single-degree contrasts, with a p-value correction for multiple tests. They also allow for an F-test for multi-line contrasts, for example when testing within groups. The aov function in the native stats package has more limited functionality.

See the chapters on One-way Anova and Two-way Anova for general considerations on conducting analysis of variance.

Packages used in this chapter
The following commands will install these packages if they are not already installed:

```r
if(!require(car)){install.packages("car")}
if(!require(lsmeans){install.packages("lsmeans")}
if(!require(multcomp)){install.packages("multcomp")}
```

Example for single degree-of-freedom contrasts
This hypothetical example could represent an experiment with a factorial design two treatments ($D$ and $C$) each at two levels (1 and 2), and a control treatment. The 2-by-2 factorial plus control is treated as a one-way anova with five treatments.

```
Input = ("Treatment Response
'D1:C1' 1.0
'D1:C1' 1.2
'D1:C1' 1.3
'D1:C2' 2.1
'D1:C2' 2.2
'D1:C2' 2.3
'D2:C1' 1.4
'D2:C1' 1.6
'D2:C1' 1.7
```

264
'D2:C2' 2.5
'D2:C2' 2.6
'D2:C2' 2.8
'Control' 1.0
'Control' 0.9
'Control' 0.8

Data = read.table(textConnection(Input),header=TRUE)

### Specify the order of factor levels. Otherwise R will alphabetize them.
Data$Treatment = factor(Data$Treatment,
                        levels=unique(Data$Treatment))

Data

boxplot(Response ~ Treatment,
        data = Data,
        ylab="Response",
        xlab="Treatment")

### Define linear model
model = lm(Response ~ Treatment,
            data = Data)

library(car)
Anova(model, type="II")

summary(model)

Example with lsmeans

### You need to look at order of factor levels to determine the contrasts
levels(Data$Treatment)

[1] "D1:C1"  "D1:C2"  "D2:C1"  "D2:C2"  "Control"

library(lsmeans)
leastsquare = lsmeans(model, "Treatment")

Contras = list(D1vsD2 = c(1, 1, -1, -1, 0),
    C1vsC2 = c(1, -1, 1, -1, 0),
    InteractionDC = c(1, -1, -1, 1, 0),
    C1vsC2forD1only = c(1, -1, 0, 0, 0),
    C1vsC2forD2only = c(0, 0, 1, -1, 0),
    TreatsvsControl = c(1, 1, 1, 1, -4),
    T1vsC = c(1, 0, 0, 0, -1),
    T2vsC = c(0, 1, 0, 0, -1),
    T3vsC = c(0, 0, 1, 0, -1),
    T4vsC = c(0, 0, 0, 1, -1))

### The column names match the order of levels of the treatment variable
### The coefficients of each row sum to 0
contrast(leastsquare, Contras, adjust="sidak")

<table>
<thead>
<tr>
<th>contrast</th>
<th>estimate</th>
<th>SE</th>
<th>df</th>
<th>t.ratio</th>
<th>p.value</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1vsD2</td>
<td>-0.83333333</td>
<td>0.1549193</td>
<td>10</td>
<td>-5.379</td>
<td>0.0031</td>
</tr>
<tr>
<td>C1vsC2</td>
<td>-2.100000000</td>
<td>0.1549193</td>
<td>10</td>
<td>-13.555</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>InteractionDC</td>
<td>0.03333333</td>
<td>0.1549193</td>
<td>10</td>
<td>0.215</td>
<td>1.0000</td>
</tr>
<tr>
<td>C1vsC2forD1only</td>
<td>-1.03333333</td>
<td>0.1095445</td>
<td>10</td>
<td>-9.433</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>C1vsC2forD2only</td>
<td>-1.066666667</td>
<td>0.1095445</td>
<td>10</td>
<td>-9.737</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>TreatsvsControl</td>
<td>3.966666667</td>
<td>0.3464102</td>
<td>10</td>
<td>11.451</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>T1vsC</td>
<td>0.266666667</td>
<td>0.1095445</td>
<td>10</td>
<td>2.434</td>
<td>0.3011</td>
</tr>
<tr>
<td>T2vsC</td>
<td>1.300000000</td>
<td>0.1095445</td>
<td>10</td>
<td>11.867</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>T3vsC</td>
<td>0.666666667</td>
<td>0.1095445</td>
<td>10</td>
<td>6.086</td>
<td>0.0012</td>
</tr>
<tr>
<td>T4vsC</td>
<td>1.73333333</td>
<td>0.1095445</td>
<td>10</td>
<td>15.823</td>
<td>&lt;.0001</td>
</tr>
</tbody>
</table>

### Note that p-values are slightly different than those from multcomp
### due to different adjustment methods. If “none” is chosen as
### the adjustment method for both procedures,
### p-values and other statistics will be the same.

### With adjust="none", results will be the same as
### the aov method.

**Example with multcomp**

### You need to look at order of factor levels to determine the contrasts

levels(Data$Treatment)

[1] "D1:C1"  "D1:C2"  "D2:C1"  "D2:C2"  "Control"
Input = ("  
Contrast.Name   D1C2  D1C2  D2C1  D2C2  Control
D1vsD2           1    1    -1    -1     0
C1vsC2           1   -1    1    -1     0
InteractionDC    1   -1    -1    1     0
C1vsC2forD1only  1   -1    0    0     0
C1vsC2forD2only  0    0    1    -1     0
TreatsvsControl  1    1    1    1     -4
T1vsC            1    0    0    0     -1
T2vsC            0    1    0    0     -1
T3vsC            0    0    1    0     -1
T4vsC            0    0    0    1     -1
")

### The column names match the order of levels of the treatment variable  
### The coefficients of each row sum to 0

Matriz = as.matrix(read.table(textConnection(Input),  
    header=TRUE,  
    row.names=1))

Matriz

library(multcomp)

G = glht(model,  
    linfct = mcp(Treatment = Matriz))

G$linfct

summary(G,  
    test=adjusted("single-step"))

### Adjustment options: "none", "single-step", "Shaffer",  
### "Westfall", "free", "holm", "hochberg",  
### "hommel", "bonferroni", "BH", "BY", "fdr"

### With test=adjusted("none"), results will be the same as aov method  
### below.

#### Estimate    Std. Error   t value   Pr(>|t|)
D1vsD2 == 0    -0.83333    0.15492   -5.379    0.00218 **  
C1vsC2 == 0    -2.10000    0.15492  -13.555    < 0.001 ***  
InteractionDC == 0  0.03333    0.15492   0.215    0.99938  
C1vsC2forD1only == 0 -1.03333    0.10954  -9.433    < 0.001 ***  
C1vsC2forD2only == 0 -1.06667    0.10954  -9.737    < 0.001 ***  
TreatsvsControl == 0  3.96667    0.34641  11.451    < 0.001 ***  
T1vsC == 0     0.26667    0.10954   2.434    0.17428  
T2vsC == 0     1.30000    0.10954  11.867    < 0.001 ***  
T3vsC == 0     0.66667    0.10954   6.086    < 0.001 ***  
T4vsC == 0     1.73333    0.10954  15.823    < 0.001 ***  

### With test=adjusted("none"), results will be the same as aov method  
### below.
Example for global F-test within a group of treatments
This example has treatments consisting of three red wines and three white wines. We will want to know if there is an effect of the treatments in the red wine group on the response variable, while keeping the individual identities of the wines in the Treatment variable. This approach is advantageous because post-hoc comparisons could still be made within the red wines, for example comparing Merlot to Cabernet.

```r
Input = ("Treatment Response
Merlot 5
Merlot 6
Merlot 7
Cabernet 8
Cabernet 9
Cabernet 10
Syrah 11
Syrah 12
Syrah 13
Chardonnay 1
Chardonnay 2
Chardonnay 3
Riesling 1
Riesling 2
Riesling 2
Gewurztraminer 1
Gewurztraminer 2
Gewurztraminer 4")

Data = read.table(textConnection(Input),header=TRUE)

Specify the order of factor levels. Otherwise R will alphabetize them.

Data$Treatment = factor(Data$Treatment,
 levels=unique(Data$Treatment))

Data

boxplot(Response ~ Treatment,
 data = Data,
 ylab="Response",
 xlab="Treatment")
```

---

268
### You need to look at order of factor levels to determine the contrasts

```r
declare levels of factor
``` levels(Data$Treatment)

```r
[1] "Merlot" "Cabernet" "Syrah" "Chardonnay" "Riesling" "Gewürztraminer"
```

### Define linear model

```r
model = lm(Response ~ Treatment,
data = Data)
```

library(car)

Anova(model, type="II")

summary(model)

**Tests of contrasts with lsmeans**

**Question: Is there an effect within red wine?**

```r
library(lsmeans)
leastsquare = lsmeans(model, "Treatment")
Constrasts = list(Red_line1 = c(1, -1, 0, 0, 0, 0),
 Red_line2 = c(0, 1, -1, 0, 0, 0))
```
### The column names match the order of levels of the treatment variable
### The coefficients of each row sum to 0

\[
\text{Test} = \text{contrast(leastsquare, Contrasts)}
\]

\[
\text{test(Test, joint=TRUE)}
\]

\[
\begin{array}{ccc}
\text{df1} & \text{df2} & \text{F} & \text{p.value} \\
2 & 12 & 24.3 & 0.0001
\end{array}
\]

### Note that two lines of contrasts resulted in one hypothesis test
### using 2 degrees of freedom. This investigated the effect within
### a group of 3 treatments.

### Results are essentially the same as those from multcomp

**Question:** Is there an effect within white wine?

```
library(lsmeans)
leastsquare = lsmeans(model, "Treatment")
Contrasts = list(White_line1 = c(0, 0, 0, 1, -1, 0),
 White_line2 = c(0, 0, 0, 0, 1, -1))
Test = contrast(leastsquare, Contrasts)

test(Test, joint=TRUE)
```

```
\[
\begin{array}{ccc}
\text{df1} & \text{df2} & \text{F} & \text{p.value} \\
2 & 12 & 0.3 & 0.7462
\end{array}
\]
```

### Note that two lines of contrasts resulted in one hypothesis test
### using 2 degrees of freedom. This investigated the effect within
### a group of 3 treatments.

### Results are the same as those from multcomp

**Question:** Is there a difference between red and white wines? And, mean separation for red wine

```
library(lsmeans)
leastsquare = lsmeans(model, "Treatment")
Contrasts = list(Red_vs_white = c(1, 1, 1, -1, -1, -1),
 Merlot_vs_Cab = c(1, -1, 0, 0, 0, 0),
 Cab_vs_Syrah = c(0, 1, -1, 0, 0, 0),
 Syrah_vs_Merlot = c(-1, 0, 1, 0, 0, 0))
Test = contrast(leastsquare, Contrasts)

test(Test, joint=TRUE)
```

```
\[
\begin{array}{ccc}
\text{df1} & \text{df2} & \text{F} & \text{p.value} \\
2 & 12 & 0.3 & 0.7462
\end{array}
\]
```

### Note that two lines of contrasts resulted in one hypothesis test
### using 2 degrees of freedom. This investigated the effect within
### a group of 3 treatments.

### Results are the same as those from multcomp
### The coefficients of each row sum to 0

```r
contrast(leastsquare, Contrasts, adjust="sidak")
```

<table>
<thead>
<tr>
<th>contrast</th>
<th>estimate</th>
<th>SE</th>
<th>df</th>
<th>t.ratio</th>
<th>p.value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red_vs_white</td>
<td>21 1.490712</td>
<td>12</td>
<td>14.087</td>
<td>&lt;.0001</td>
<td></td>
</tr>
<tr>
<td>Merlot_vs_Cab</td>
<td>-3 0.860663</td>
<td>12</td>
<td>-3.486</td>
<td>0.0179</td>
<td></td>
</tr>
<tr>
<td>Cab_vs_Syrah</td>
<td>-3 0.860663</td>
<td>12</td>
<td>-3.486</td>
<td>0.0179</td>
<td></td>
</tr>
<tr>
<td>Syrah_vs_Merlot</td>
<td>6 0.860663</td>
<td>12</td>
<td>6.971</td>
<td>0.0001</td>
<td></td>
</tr>
</tbody>
</table>

### Note that p-values are slightly different than those from multcomp due to different adjustment methods. If “none” is chosen as the adjustment method for both procedures, p-values and other statistics will be the same.

### Tests of contrasts with multcomp

**Question: Is there an effect within red wine?**

```r
Input = "
 Contrast Merlot Cabernet Syrah Chardonnay Riesling Gewürztraminer
 Red_line1 1 1 0 0 0 0
 Red_line2 0 1 1 0 0 0
"
```

### Note: there are two lines of contrasts for a group of three treatments

### The column names match the order of levels of the treatment variable

```r
Matriz = as.matrix(read.table(textConnection(Input),
 header=TRUE,
 row.names=1))
```

```r
Matriz
```

```r
library(multcomp)
```

```r
G = glht(model, linfct = mcp(Treatment = Matriz))
```

```r
G$linfct
```

```r
summary(G,
 test = Ftest())
```

**Global Test:**

<table>
<thead>
<tr>
<th>F</th>
<th>DF1</th>
<th>DF2</th>
<th>Pr(&gt;F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24.3</td>
<td>12</td>
<td>6.029e-05</td>
</tr>
</tbody>
</table>
### Note that two lines of contrasts resulted in one hypothesis test using 2 degrees of freedom. This investigated the effect within a group of 3 treatments.

**Question: Is there an effect within white wine?**

Input = "
Contrast     Merlot  Cabernet  Syrah  Chardonnay  Riesling  Gewürztraminer
White_line1  0       0         0      1           -1       0
White_line2  0       0         0      0           1        -1
"

### Note: there are two lines of contrasts for a group of three treatments

### The column names match the order of levels of the treatment variable
### The coefficients of each row sum to 0

Matriz = as.matrix(read.table(textConnection(Input),
                           header=TRUE,
                           row.names=1))

Matriz

library(multcomp)

G = glht(model, linfct = mcp(Treatment = Matriz))

G$linfct

summary(G,
         test = Ftest())

**Global Test:**

<table>
<thead>
<tr>
<th>F</th>
<th>DF1</th>
<th>DF2</th>
<th>Pr(&gt;F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3</td>
<td>12</td>
<td>0.7462</td>
</tr>
</tbody>
</table>

### Note that two lines of contrasts resulted in one hypothesis test using 2 degrees of freedom. This investigated the effect within a group of 3 treatments.

# # # #

**Question: Is there a difference between red and white wines? And, mean separation for red wine**

Input = "
Contrast     Merlot  Cabernet  Syrah  Chardonnay  Riesling  Gewürztraminer
Red_vs_white 1       1          1      -1           -1       -1
Merlot_vs_Cab 1      -1         0      0           0        0
Cab_vs_Syrah  0       1         -1     0           0        0
Syrah_vs_Merlot -1     0         1      0           0        0
"

272
names match the order of levels of the treatment variable
### The coefficients of each row sum to 0

Matriz = as.matrix(read.table(textConnection(Input),
header=TRUE,
row.names=1))

Matriz
library(multcomp)
G = glht(model,
  linfct = mcp(Treatment = Matriz))
G$linfct
summary(G,
  test=adjusted("single-step"))

### Adjustment options: "none", "single-step", "Shaffer",
### "Westfall", "free", "holm", "hochberg",
### "hommel", "bonferroni", "BH", "BY", "fdr"

Linear Hypotheses:                 Estimate Std. Error t value Pr(>|t|)
Red_vs_white == 0 21.0000     1.4907  14.087   <0.001 ***
Merlot_vs_Cab == 0 -3.0000     0.8607 -3.486   0.0157 *
Cab_vs_Syrah == 0 -3.0000     0.8607 -3.486   0.0156 *
Syrah_vs_Merlot == 0 6.0000     0.8607  6.971   <0.001 ***

(Adjusted p values reported -- single-step method)

### With test=adjusted("none"), results will be the same as aov method below.

Tests of contrasts within aov
Another method to use single-degree-of-freedom contrasts within an anova is to use the split option within the summary function for an aov analysis. The number of degrees of freedom that a factor can be split into for contrast tests is limited.

Input =("
`'D2:C2' 2.5
'D2:C2' 2.6
'D2:C2' 2.8
'Control' 1.0
'Control' 0.9
'Control' 0.8
")

Data = read.table(textConnection(Input), header=TRUE)

Data$Treatment = factor(Data$Treatment, levels=unique(Data$Treatment))

### Specify the order of factor levels. Otherwise R will alphabetize them.

Data

boxplot(Response ~ Treatment,
       data = Data,
       ylab="Response",
       xlab="Treatment")

levels(Data$Treatment)

### You need to look at order of factor levels to determine the contrasts

[1] "D1:C1"  "D1:C2"  "D2:C1"  "D2:C2"  "Control"

### Define contrasts

D1vsD2 = c(1, 1, -1, -1, 0)
C1vsC2 = c(1, -1, 1, -1, 0)
InteractionDC = c(1, -1, -1, 1, 0)
TreatsvsControl = c(1, 1, 1, 1, -4)

Matriz = cbind(D1vsD2, C1vsC2, InteractionDC, TreatsvsControl)
Cate–Nelson Analysis

Cate–Nelson analysis is used to divide bivariate data into two groups: one where a change in the x variable is likely to correspond to a change in the y variable, and the other group where a change in x is unlikely to correspond to a change y. Traditionally this method was used for soil test calibration. For example to determine if a certain level of soil test phosphorus would indicate that adding phosphorus to the soil would likely cause an increase in crop yield or not.

The method can be used for any case in which bivariate data can be separated into two groups, one with a large x variable is associated with a large y, and a small x associated with a small y. Or vice-versa.

For a fuller description of Cate–Nelson analysis and examples in soil-test and other applications, see Mangiafico (2013) and the references there.

Custom function to develop Cate–Nelson models
My cateNelson function follows the method of Cate and Nelson (1971). A critical x value is determined by iteratively breaking the data into two groups and comparing the explained sum of squares of the iterations. A critical y value is determined by using an iterative process which minimizes the number of data point which fall into Quadrant I and III for data with a positive trend.

Options in the cateNelson function:
- plotit=TRUE (the default) produces a plot of the data, a plot of the sum of squares of the iterations, a plot of the data points in error quadrants, and a final plot with critical x and critical y drawn as lines on the plot.

- hollow=TRUE (the default) for the final plot, points in the error quadrants as open circles

- trend="negative" (not the default) needs to be used if the trend of the data is negative.

- xthreshold and ythreshold determine how many options the function will return for critical x and critical y. A value of 1 would return all possibilities. A value of 0.10 returns values in the top 10% of the range of maximum sum of squares.

- clx and cly determine which of the listed critical x and critical y the function should use to build the final model. A value of 1 selects the first displayed value, and a value of 2 selects the second. This is useful when you have more than one critical x that maximizes or nearly maximizes the sum of squares, or if you want to force the critical y value to be close to some value such as 90% of maximum yield. Note that changing the clx value will also change the list of critical y values that is displayed. In the second example I set clx=2 to select a critical x that more evenly divides the errors across the quadrants.

**Example of Cate–Nelson analysis**

```r
##--
Cate-Nelson analysis
##--

size = c(68.55,6.45,6.98,1.05,4.44,0.46,4.02,1.21,4.03,6.05,48.39,9.88,3.63,38.31,22.98,5.24,2.82,1.61,76.61,4.64,0.28,0.37,0.81,1.41,0.81,2.02,20.16,4.04,8.47,8.06,20.97,11.69,16.13,6.85,4.84,80.65,1.61,0.10)

proportion = c(0.850,0.729,0.737,0.752,0.639,0.579,0.594,0.534,0.541,0.759,0.677,0.820,0.534,0.684,0.504,0.662,0.624,0.647,0.609,0.647,0.632,0.632,0.459,0.684,0.361,0.556,0.850,0.729,0.729,0.669,0.880,0.774,0.729,0.774,0.662,0.737,0.586,0.316)

library(rcompanion)

cateNelson(x = size,
 y = proportion,
 plotit=TRUE,
 hollow=TRUE,
 xlab="Nursery size in hectares",
 ylab="Proportion of good practices adopted",
 trend="positive",
 }
```
```
clx=1,
cly=1,
xthreshold=0.10,
ythreshold=0.15)

Critical x that maximize sum of squares:

<table>
<thead>
<tr>
<th>Critical.x.value</th>
<th>Sum.of.squares</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.035</td>
</tr>
<tr>
<td>2</td>
<td>4.740</td>
</tr>
</tbody>
</table>

Critical y that minimize errors:

<table>
<thead>
<tr>
<th>Critical.y.value</th>
<th>Q.I</th>
<th>Q.II</th>
<th>Q.III</th>
<th>Q.IV</th>
<th>Q.model</th>
<th>Q.err</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.6355</td>
<td>3</td>
<td>20</td>
<td>2</td>
<td>13</td>
<td>33</td>
</tr>
<tr>
<td>2</td>
<td>0.6430</td>
<td>3</td>
<td>19</td>
<td>3</td>
<td>13</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>0.6470</td>
<td>3</td>
<td>19</td>
<td>3</td>
<td>13</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>0.6545</td>
<td>2</td>
<td>18</td>
<td>4</td>
<td>14</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>0.6620</td>
<td>2</td>
<td>18</td>
<td>4</td>
<td>14</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>0.6015</td>
<td>6</td>
<td>21</td>
<td>1</td>
<td>10</td>
<td>31</td>
</tr>
<tr>
<td>7</td>
<td>0.6280</td>
<td>5</td>
<td>20</td>
<td>2</td>
<td>11</td>
<td>31</td>
</tr>
<tr>
<td>8</td>
<td>0.6320</td>
<td>5</td>
<td>20</td>
<td>2</td>
<td>11</td>
<td>31</td>
</tr>
</tbody>
</table>

n = Number of observations
CLx = Critical value of x
SS = Sum of squares for that critical value of x
CLy = Critical value of y
Q = Number of observations which fall into quadrants I, II, III, IV
Q.model = Total observations which fall into the quadrants predicted by the model
p.model = Percent observations which fall into the quadrants predicted by the model
Q.Error = Observations which do not fall into the quadrants predicted by the model
p.Error = Percent observations which do not fall into the quadrants predicted by the model
Fisher = p-value from Fisher exact test dividing data into these quadrants

Final result:

| n | CLx | SS | CLy Q.I Q.II Q.III Q.IV Q.Model p.Model Q.Error | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 38 | 4.035 | 0.2254775 | 0.6355 | 3 | 20 | 2 | 13 | 33 | 0.8684211 | 5 |
| | p.Error | Fisher.p.value |
| | 0.1315789 | 8.532968e-06 |
```
Plots showing the results of Cate–Nelson analysis. In the final plot, the critical x value is indicated with a vertical blue line, and the critical y value is indicated with a
horizontal blue line. Points agreeing with the model are solid, while hollow points indicate data not agreeing with model. (Data from Mangiafico, S.S., Newman, J.P., Mochizuki, M.J., & Zurawski, D. (2008). Adoption of sustainable practices to protect and conserve water resources in container nurseries with greenhouse facilities. Acta horticulturae 797, 367–372.)

# # #

**Example of Cate–Nelson analysis with negative trend data**

```
#---
Cate-Nelson analysis
Hypothetical data
#---

Input =
 x y
 5 55
 7 110
 6 120
 5 130
 7 120
 10 55
 12 60
 11 110
 15 50
 21 55
 22 60
 20 70
 24 55

Data = read.table(textConnection(Input),header=TRUE)

library(rcompanion)
cateNelson(x = Data$x, y = Data$y, plotit=TRUE, hollow=TRUE, xlab="x", ylab="y", trend="negative", clx=2, # Normally leave as 1 unless you wish to cly=1, # select a specific critical x value xthreshold=0.10, ythreshold=0.15)

Critical x that maximize sum of squares:

<table>
<thead>
<tr>
<th>Critical.x.value</th>
<th>Sum.of.squares</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.5</td>
</tr>
<tr>
<td>2</td>
<td>8.5</td>
</tr>
</tbody>
</table>

```
Critical y that minimize errors:

<table>
<thead>
<tr>
<th>Critical.y.value</th>
<th>Q.i</th>
<th>Q.ii</th>
<th>Q.iii</th>
<th>Q.iv</th>
<th>Q.model</th>
<th>Q.err</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>90</td>
<td>4</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>110</td>
<td>4</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>115</td>
<td>3</td>
<td>0</td>
<td>8</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>120</td>
<td>3</td>
<td>0</td>
<td>8</td>
<td>2</td>
<td>11</td>
</tr>
</tbody>
</table>

\( n \) = Number of observations

\( CLx \) = Critical value of \( x \)

\( SS \) = Sum of squares for that critical value of \( x \)

\( CLy \) = Critical value of \( y \)

\( Q \) = Number of observations which fall into quadrants I, II, III, IV

\( Q.Model \) = Total observations which fall into the quadrants predicted by the model

\( p.Model \) = Percent observations which fall into the quadrants predicted by the model

\( Q.Error \) = Observations which do not fall into the quadrants predicted by the model

\( p.Error \) = Percent observations which do not fall into the quadrants predicted by the model

\( Fisher \) = p-value from Fisher exact test dividing data into these quadrants

Final model:

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13</td>
<td>8.5</td>
<td>5608.974</td>
<td>90</td>
<td>4</td>
<td>1</td>
<td>7</td>
<td>11</td>
<td>0.8461538</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

\( p.Error \) Fisher.p.value

0.1538462 0.03185703

Plot showing the final result of Cate–Nelson analysis, for data with a negative trend.

References

Additional Helpful Tips

Reading SAS Datalines in R

Reading SAS datalines with *DescTools*
The *ParseSASDatalines* function in the *DescTools* package will read in data with simple SAS DATALINES code. More complex INPUT schemes may not work.

```r

Reading SAS datalines, DescTools::ParseSASDatalines example

Input = ("DATA survey;
 INPUT id sex $ age inc r1 r2 r3 @@;
 DATALINES;
 1 F 35 17 7 2 2 17 M 50 14 5 5 3 33 F 45 6 7 2 7
 49 M 24 14 7 5 7 65 F 52 9 4 7 7 81 M 44 11 7 7 7
 2 F 34 17 6 5 3 18 M 40 14 7 5 2
 34 F 47 6 6 5 6
 50 M 35 17 5 7 5
 ;")

library(DescTools)

Data = ParseSASDatalines(Input)

You can omit the DATA statement, the @@, and the final semi-colon.
The $ is required for factor variables.

Data

 id sex age inc r1 r2 r3
 1 1 F 35 17 7 2 2
 2 17 M 50 14 5 5 3
 3 33 F 45 6 7 2 7
 4 49 M 24 14 7 5 7
 5 65 F 52 9 4 7 7
 6 81 M 44 11 7 7 7
 7 2 F 34 17 6 5 3
 8 18 M 40 14 7 5 2
 9 34 F 47 6 6 5 6
10 50 M 35 17 5 7 5

#